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Abstract Animals move in and interact with complex environments that can be
characterised by a set of spatial layers containing environmental data. Spatial
databases can manage these different data sets in a unified framework, defining
spatial and non-spatial relationships that simplify the analysis of the interaction
between animals and their habitat. A large set of analyses can be performed
directly in the database with no need for dedicated GIS or statistical software. Such
an approach moves the information content managed in the database from a
‘geographical space’ to an ‘animal’s ecological space’. This more comprehensive
model of the animals’ movement ecology reduces the distance between physical
reality and the way data are structured in the database, filling the semantic gap
between the scientist’s view of biological systems and its implementation in the
information system. This chapter shows how vector and raster layers can be
included in the database and how you can handle them using (spatial) SQL. The
database built so far in Chaps. 2, 3, 4 and 5 is extended with environmental
ancillary data sets and with an automated procedure to intersect these layers with
GPS positions.
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Introduction

Animals move in and interact with complex environments that can be character-
ised by a set of spatial layers containing environmental data. In traditional
information systems for wildlife tracking data management, position data are
stored in some file-based spatial format (e.g. shapefile). With a multi-steps process
in a GIS environment, position data are associated with a set of environmental
attributes through an analytical stage (e.g. intersection of GPS positions with
vector and raster environmental layers). This process is usually time-consuming
and prone to error, implies data replication and often has to be repeated for any
new analysis. It also generally involves different tools for vector and raster data.
An advanced data management system should achieve the same result with an
efficient (and, if needed, automated) procedure, possibly performed as a real-time
routine management task. To do so, the first step is to integrate both position data
and spatial ancillary information on the environment in a unique framework. This
is essential to exploring the animals’ behaviour and understanding the ecological
relationships that can be revealed by tracking data. Spatial databases can manage
these different data sets in a unified framework, defining spatial and non-spatial
relationships that simplify the analysis of the interaction between animals and their
habitat. A large set of analyses can be performed directly in the database with no
need for dedicated GIS or statistical software. This also affects performance, as
databases are optimised to run simple processes on large data sets like the ones
generated by GPS sensors. Database tools such as triggers and functions can be
used, for example, to automatically intersect positions with the ancillary infor-
mation stored as raster and vector layers. The result is that positions are trans-
formed from a simple pair of numbers (coordinates) to complex multi-dimensional
(spatial) objects that define the individual and its habitat in time and space,
including their interactions and dependencies. In an additional step, position data
can also be joined to activity data to define an even more complete picture of the
animal’s behaviour (see Chap. 12). Such an approach moves the information
content managed in the database from a ‘geographical space’ to an ‘animal’s
ecological space’. This more comprehensive model of the animal movement
ecology reduces the distance between physical reality and the way data are
structured in the database, filling the semantic gap between the scientist’s view of
biological systems and its implementation in the information system. This is not
only interesting from a conceptual point of view, but also has deep practical
implications. Scientists and wildlife managers can deal with data in the same way
they model the object of their study as they can start their analyses from objects
that represent the animals in their habitat (which previously was the result of a
long and complex process). Moreover, users can directly query these objects using
a simple and powerful language (SQL) that is close to their natural language.
All these elements strengthen the opportunity provided by GPS data to move from
mainly testing statistical hypotheses to focusing on biological hypotheses. Scien-
tists can store, access and manipulate their data in a simple and quick way, which
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allows them to formulate biological questions that previously were almost
impossible to answer for technical reasons.

This chapter shows how vector and raster layers can be included in the data-
base, how you can handle them using (spatial) SQL and how you can associate
with the GPS locations. In the next chapter, we will focus on raster time series
using remote sensing images.

Adding Ancillary Environmental Layers

In the exercise, you will see how to integrate a number of spatial features (see
Fig. 6.1).

• Points: meteorological stations (derived from MeteoTrentino1).
• Linestrings: roads network (derived from OpenStreetMap2).
• Polygons: administrative units (derived from ISTAT3) and the study area.
• Rasters: land cover (source: Corine4) and digital elevation models (source:

SRTM5, see also Jarvis et al. 2008).

Each species and study have specific data sets required and available, so the
goal of this example is to show a complete set of procedures that can be replicated
and customised on different data sets. When layers are integrated into the database,
you can visualise and explore them in a GIS environment (e.g. QGIS).

Once data are loaded into the database, you will extend the gps_data_animals
table with the environmental attributes derived from the ancillary layers provided
in the test data set. You will also modify the function tools.new_gps_data_animals
to compute these values automatically. In addition, you are encouraged to develop
your own (spatial) queries (e.g. detect how many times each animal crosses a road,
calculate how many times two animals are in the same place at the same time).

It is a good practice to store your environmental layers in a dedicated schema in
order to keep a clear database structure. Let us create the schema env_data:

CREATE SCHEMA env_data

  AUTHORIZATION postgres;

GRANT USAGE ON SCHEMA env_data TO basic_user;

COMMENT ON SCHEMA env_data 

IS 'Schema that stores environmental ancillary information.';

ALTER DEFAULT PRIVILEGES IN SCHEMA env_data 

  GRANT SELECT ON TABLES TO basic_user;

1 Provincia autonoma di Trento—Servizio Prevenzione Rischi—Ufficio Previsioni e pianifi-
cazione, http://www.meteotrentino.it.
2 http://www.openstreetmap.org.
3 http://www.istat.it/it/strumenti/cartografia.
4 http://www.eea.europa.eu/data-and-maps/data/
corine-land-cover-2006-clc2006-100-m-version-12-2009.
5 http://srtm.csi.cgiar.org/.
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Importing Shapefiles: Points, Lines and Polygons

Now you can start importing the shapefiles of the (vector) environmental layers
included in the test data set. As discussed in Chap. 5, an option is to use the
drag-and-drop function of ‘DB Manager’ (from QGIS Browser) plugin in QGIS
(see Fig. 6.2).

Alternatively, a standard solution to import shapefiles (vector data) is the
shp2pgsql tool. shp2pgsql is an external command-line tool, which cannot be run
in an SQL interface as it can for a regular SQL command. The code below has to
be run in a command-line interpreter (if you are using Windows as operating
system, it is also called Command Prompt or MS-DOS shell, see Fig. 6.3). You
will see other examples of external tools that are run in the same way, and it is very
important to understand the difference between these and SQL commands. In this
guide, this difference is represented graphically by white text boxes (see below) for
shell commands, while the SQL code is shown in grey text boxes. Start with the
meteorological stations:

Fig. 6.1 Environmental layers that will be integrated into the database
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"C:\Program Files\PostgreSQL\9.2\bin\shp2pgsql.exe" -s 4326 -I 

C:\tracking_db\data\env_data\vector\meteo_stations.shp

env_data.meteo_stations | "C:\Program Files\PostgreSQL\9.2\bin\psql.exe" -p 

5432 -d gps_tracking_db -U postgres -h localhost 

Note that the path to shp2pgsql.exe and psql.exe can be different according to
the folder where you installed your version of PostgreSQL. If you connect with the
database remotely, you also have to change the address of the server (-h option). In
the parameters, set the reference system (option -s) and create a spatial index for
the new table (option -I). The result of shp2pgsql is a text file with the SQL that
generates and populates the table env_data.meteo_stations. With the symbol ‘|’ you
‘pipe’ (send directly) the SQL to the database (through the PostgreSQL interactive
terminal psql6) where it is automatically executed. You have to set the port (-p), the
name of the database (-d), the user (-U), and the password, if requested. In this way,
you complete the whole process with a single command. You can refer to
shp2pgsql documentation for more details. You might have to add the whole path
to psql and shp2pgsql. This depends on the folder where you installed PostgreSQL.
You can easily verify the path searching for these two files. You also have to check
that the path of your shapefile (meteo_stations.shp) is properly defined.

You can repeat the same operation for the study area layer:

Fig. 6.2 Loading data into PostgreSQL using the drag-and-drop tool in QGIS

6 http://www.postgresql.org/docs/9.2/static/app-psql.html.
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"C:\Program Files\PostgreSQL\9.2\bin\shp2pgsql.exe" -s 4326 -I 

C:\tracking_db\data\env_data\vector\study_area.shp env_data.study_area | 

"C:\Program Files\PostgreSQL\9.2\bin\psql.exe" -p 5432 -d gps_tracking_db -U

postgres -h localhost 

Next for the roads layer

"C:\Program Files\PostgreSQL\9.2\bin\shp2pgsql.exe" -s 4326 -I 

C:\tracking_db\data\env_data\vector\roads.shp env_data.roads | "C:\Program 

Files\PostgreSQL\9.2\bin\psql.exe" -p 5432 -d gps_tracking_db -U postgres -h

localhost

And for the administrative boundaries

"C:\Program Files\PostgreSQL\9.2\bin\shp2pgsql.exe" -s 4326 -I 
C:\tracking_db\data\env_data\vector\adm_boundaries.shp
env_data.adm_boundaries | "C:\Program Files\PostgreSQL\9.2\bin\psql.exe" -p 
5432 -d gps_tracking_db -U postgres -h localhost 

Now the shapefiles are in the database as new tables (one table for each
shapefile). You can visualise them through a GIS interface (e.g. QGIS). You can
also retrieve a summary of the information from all vector layers available in the
database with the following command:

SELECT * FROM geometry_columns;

Fig. 6.3 The command shp2pgsql from Windows command-line interpreter
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Importing Raster Files

The primary method to import a raster layer is the command-line tool
raster2pgsql7, the equivalent of shp2pgsql, but for raster files, that converts
GDAL-supported rasters into SQL suitable for loading into PostGIS. It is also
capable of loading folders of raster files.

Special Topic: GDAL

GDAL8 (Geospatial Data Abstraction Library) is a (free) library for reading, writing and
processing raster geospatial data formats. It has a lot of simple but very powerful and fast
command-line tools for raster data translation and processing. The related OGR library
provides a similar capability for simple vector data features. GDAL is used by most of the
spatial open source tools and by a large number of commercial software programs as well.
You will probably benefit in particular from the tools gdalinfo9 (get a layer’s basic
metadata), gdal_translate10 (change data format, change data type, cut), gdalwarp11

(mosaicing, reprojection and warping utility).

An interesting feature of raster2pgsql is its capability to store the rasters inside
the database (in-db) or keep them as (out-db) files in the file system (with the
raster2pgsql -R option). In the last case, only rasters as metadata are stored in the
database, not pixel values themselves. Loading out-db rasters as metadata is much
faster than loading them completely in the database. Most operations at the pixel
values level (e.g. ST_SummaryStats) will have equivalent performance with out-
and in-db rasters. Other functions, like ST_Tile, involving only the metadata, will
be faster with out-db rasters. Another advantage of out-db rasters is that they stay
accessible for external applications unable to query databases (with SQL). How-
ever, the administrator must make sure that the link between what is in the db (the
path to the raster file in the file system) is not broken (e.g. by moving or renaming
the files). On the other hand, only in-db rasters can be generated with CREATE
TABLE and modified with UPDATE statements. Which is the best choice depends
on the size of the data set and on considerations about performance and database
management. A good practice is generally to load very large raster data sets as out-
db and to load smaller ones as in-db to save time on loading and to avoid
repeatedly backing up huge, static rasters.

The QGIS plugin ‘Load Raster to PostGIS’ can also be used to import raster
data with a graphical interface. An important parameter to set when importing
raster layers is the number of tiles (-t option). Tiles are small subsets of the image
and correspond to a physical record in the table. This approach dramatically

7 http://postgis.net/docs/manual-2.0/using_raster.xml.html#RT_Raster_Loader.
8 http://www.gdal.org/.
9 http://www.gdal.org/gdalinfo.html.
10 http://www.gdal.org/gdal_translate.html.
11 http://www.gdal.org/gdalwarp.html.
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decreases the time required to retrieve information. The recommended values for
the tile option range from 20 9 20 to 100 9 100. Here is the code (to be run in the
Command Prompt) to transform a raster (the digital elevation model derived from
SRTM) into the SQL code that is then used to physically load the raster into the
database (as you did with shp2pgsql for vectors):

"C:\Program Files\PostgreSQL\9.2\bin\raster2pgsql.exe" -I -M -C -s 4326 -t 

20x20 C:\tracking_db\data\env_data\raster\srtm_dem.tif env_data.srtm_dem | 

"C:\Program Files\PostgreSQL\9.2\bin\psql.exe" -p 5432 -d gps_tracking_db -U

postgres -h localhost

You can repeat the same process on the land cover layer:

"C:\Program Files\PostgreSQL\9.2\bin\raster2pgsql.exe" -I -M -C -s 3035 

env_data.corine_land_cover | "C:\Program Files\PostgreSQL\9.2\bin\psql.exe" 

-p 5432 -d gps_tracking_db -U postgres -h localhost

-t 20x20 C:\tracking_db\data\env_data\raster\corine06.tif

The reference system of the Corine land cover data set is not geographic
coordinates (SRID 4326), but ETRS89/ETRS-LAEA (SRID 3035), an equal-area
projection over Europe. This must be specified with the -s option and kept in mind
when this layer will be connected to other spatial layers stored in a different
reference system. As with shp2pgsql.exe, the -I option will create a spatial index
on the loaded tiles, speeding up many spatial operations, and the -C option will
generate a set of constraints on the table, allowing it to be correctly listed in the
raster_columns metadata table. The land cover raster identifies classes that are
labelled by a code (an integer). To specify the meaning of the codes, you can add a
table where they are described. In this example, the land cover layer is taken from
the Corine project12. Classes are described by a hierarchical legend over three
nested levels. The legend is provided in the test data set in the file ‘corine_leg-
end.csv’. You import the table of the legend (first creating an empty table, and then
loading the data):

CREATE TABLE env_data.corine_land_cover_legend(

  grid_code integer NOT NULL,

  clc_l3_code character(3),

  label1 character varying,

  label2 character varying,

  label3 character varying,

  CONSTRAINT corine_land_cover_legend_pkey 

    PRIMARY KEY (grid_code ));

COMMENT ON TABLE env_data.corine_land_cover_legend

IS 'Legend of Corine land cover, associating the numeric code to the three 

nested levels.';

12 http://www.eea.europa.eu/publications/COR0-landcover.
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Then, you load the data:

COPY env_data.corine_land_cover_legend 

FROM

  'C:\tracking_db\data\env_data\raster\corine_legend.csv' 

  WITH (FORMAT csv, HEADER, DELIMITER ';');

You can retrieve a summary of the information from all raster layers available
in the database with the following command:

SELECT * FROM raster_columns;

To keep a well-documented database, add comments to describe all the spatial
layers that you have added:

COMMENT ON TABLE env_data.adm_boundaries 

IS 'Layer (polygons) of administrative boundaries (comuni).';

COMMENT ON TABLE env_data.corine_land_cover 

IS 'Layer (raster) of land cover (from Corine project).';

COMMENT ON TABLE env_data.meteo_stations 

IS 'Layer (points) of meteo stations.';

COMMENT ON TABLE env_data.roads 

IS 'Layer (lines) of roads network.';

COMMENT ON TABLE env_data.srtm_dem 

IS 'Layer (raster) of digital elevation model (from SRTM project).';

COMMENT ON TABLE env_data.study_area 

IS 'Layer (polygons) of the boundaries of the study area.';

Querying Spatial Environmental Data

As the set of ancillary (spatial) information is now loaded into the database, you
can start playing with this information using spatial SQL queries. In fact, it is
possible with spatial SQL to run queries that explicitly handle the spatial rela-
tionships among the different spatial tables that you have stored in the database. In
the following examples, SQL statements will show you how to take advantage of
PostGIS features to manage, explore, and analyse spatial objects, with optimised
performances and no need for specific GIS interfaces. You start by asking for the
name of the administrative unit (‘comune’, Italian commune) in which the point at
coordinates (11, 46) (longitude, latitude) is located. There are two commands that
are used when it comes to intersection of spatial elements: ST_Intersects and
ST_Intersection. The former returns true if two features intersect, while the latter
returns the geometry produced by the intersection of the objects. In this case,
ST_Intersects is used to select the right commune:
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SELECT

  nome_com

FROM

  env_data.adm_boundaries 

WHERE

  ST_Intersects((ST_SetSRID(ST_MakePoint(11,46), 4326)), geom);

The result is

 nome_com 

----------

 Cavedine

In the second example, you compute the distance (rounded to the metre) from the
point at coordinates (11, 46) to all the meteorological stations (ordered by distance)
in the table env_data.meteo_stations. This information could be used, for example,
to derive the precipitation and temperature for a GPS position at the given acqui-
sition time, weighting the measurement from each station according to the distance
from the point. In this case, ST_Distance_Spheroid is used. Alternatively, you could
use ST_Distance and cast your geometries as geography data types.

SELECT

  station_id, ST_Distance_Spheroid((ST_SetSRID(ST_MakePoint(11,46), 4326)), 

geom, 'SPHEROID["WGS 84",6378137,298.257223563]')::integer AS distance

FROM

  env_data.meteo_stations

ORDER BY 

  distance;

The result is

 station_id | distance 

------------+----------

          1 |     2224

          2 |     4080

          5 |     4569

          4 |    10085

          3 |    10374

          6 |    18755

In the third example, you compute the distance to the closest road:

SELECT

  ST_Distance((ST_SetSRID(ST_MakePoint(11,46), 4326))::geography, 

geom::geography)::integer AS distance

FROM

  env_data.roads

ORDER BY 

  distance 

LIMIT 1;
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The result is

 distance 

----------

     1560

For users, the data type (vector, raster) used to store spatial information is not so
relevant when they query their data: queries should transparently use any kind of
spatial data as input. Users can then focus on the environmental model instead of
worrying about the data model. In the next example, you intersect a point with two
raster layers (altitude and land cover) in the same way you do for vector layers. In the
case of land cover, the point must first be projected into the Corine reference system
(SRID 3035). In the raster layer, just the Corine code class (integer) is stored while
the legend is stored in the table env_data.corine_land_cover_legend. In the query,
the code class is joined to the legend table and the code description is returned. This is
an example of integration of both spatial and non-spatial elements in the same query.

The result is

 altitude | land_cover | label2  |      label3       

--------------------------------------------------

      956 |         24 | Forests | Coniferous forest

Now, combine roads and administrative boundaries to compute how many
metres of roads there are in each administrative unit. You first have to intersect the
two layers (ST_Intersection), then compute the length (ST_Length) and summarise
per administrative unit (sum associated with GROUP BY clause).

  ST_Intersects(srtm_dem.rast,(ST_SetSRID(ST_MakePoint(11,46), 4326))) AND

  grid_code = ST_Value(corine_land_cover.rast,

    ST_Transform((ST_SetSRID(ST_MakePoint(11,46), 4326)), 3035));

SELECT

  ST_Value(srtm_dem.rast,

  (ST_SetSRID(ST_MakePoint(11,46), 4326))) AS altitude,

  ST_value(corine_land_cover.rast,

  ST_transform((ST_SetSRID(ST_MakePoint(11,46), 4326)), 3035)) AS land_cover, 

  label2,label3 

FROM

  env_data.corine_land_cover, 

  env_data.srtm_dem, 

  env_data.corine_land_cover_legend

WHERE

  ST_Intersects(corine_land_cover.rast,

    ST_Transform((ST_SetSRID(ST_MakePoint(11,46), 4326)), 3035)) AND
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SELECT

  nome_com, 

  sum(ST_Length(

    (ST_Intersection(roads.geom, adm_boundaries.geom))::geography))::integer

AS total_length

FROM

  env_data.roads, 

  env_data.adm_boundaries 

WHERE

  ST_Intersects(roads.geom, adm_boundaries.geom)

GROUP BY 

  nome_com 

ORDER BY 

  total_length desc;

The result of the query is

   nome_com    | total_length 

-----------------------------

 Trento        |        24552

 Lasino        |        15298

 Garniga Terme |        12653

 Calavino      |         6185

 Cavedine      |         5802

 Cimone        |         5142

 Padergnone    |         4510

 Vezzano       |         1618

 Aldeno        |         1367

The last examples are about the interaction between rasters and polygons. In
this case, you compute some statistics (minimum, maximum, mean and standard
deviation) for the altitude within the study area:

SELECT

  (sum(ST_Area(((gv).geom)::geography)))/1000000 area,

  min((gv).val) alt_min, 

  max((gv).val) alt_max,

  avg((gv).val) alt_avg,

  stddev((gv).val) alt_stddev

FROM

  (SELECT 

    ST_intersection(rast, geom) AS gv

  FROM 

    env_data.srtm_dem,

    env_data.study_area 

  WHERE 

    ST_intersects(rast, geom)

) foo;

The result, from which it is possible to appreciate the large variability of
altitude across the study area, is
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       area       | alt_min | alt_max |     alt_avg      |   alt_stddev    

------------------+---------+---------+------------------+-----------------

 199.018552456188 |     180 |    2133 | 879.286157704969 | 422.56622698974

You might also be interested in the number of pixels of each land cover type within
the study area. As with the previous example, you first intersect the study area with
the raster of interest, but in this case, you need to reproject the study area polygon into
the coordinate system of the Corine land cover raster (SRID 3035). With the fol-
lowing query, you can see the dominance of mixed forests in the study area:

SELECT (pvc).value, SUM((pvc).count) AS total, label3

FROM

  (SELECT ST_ValueCount(rast) AS pvc

  FROM env_data.corine_land_cover, env_data.study_area

  WHERE ST_Intersects(rast, ST_Transform(geom, 3035))) AS cnts, 

  env_data.corine_land_cover_legend

WHERE grid_code = (pvc).value

GROUP BY (pvc).value, label3

ORDER BY (pvc).value;

The result is

 lc_class | total |                     label3                     

----------+-------+------------------------------------------------

        1 |   114 | Continuous urban fabric

        2 |   817 | Discontinuous urban fabric

        3 |   324 | Industrial or commercial units

        7 |   125 | Mineral extraction sites

       16 |   324 | Fruit trees and berry plantations

       18 |   760 | Pastures

       19 |   237 | Annual crops associated with permanent crops

       20 |  1967 | Complex cultivation patterns

       21 |  2700 | Land principally occupied by agriculture

       23 |  4473 | Broad-leaved forest

       24 |  2867 | Coniferous forest

       25 |  8762 | Mixed forest

       26 |   600 | Natural grasslands

       27 |   586 | Moors and heathland

       29 |  1524 | Transitional woodland-shrub

       31 |   188 | Bare rocks

       32 |   611 | Sparsely vegetated areas

       41 |   221 | Water bodies

The previous query can be modified to return the percentage of each class over
the total number of pixels. This can be achieved using window functions13:

13 http://www.postgresql.org/docs/9.2/static/tutorial-window.html.
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SELECT

  (pvc).value, 

  (SUM((pvc).count)*100/    SUM(SUM((pvc).count)) over ())  ::numeric(4,2) 

FROM

  (SELECT ST_ValueCount(rast) AS pvc

  FROM env_data.corine_land_cover, env_data.study_area

  WHERE ST_Intersects(rast, ST_Transform(geom, 3035))) AS cnts, 

  env_data.corine_land_cover_legend

WHERE grid_code = (pvc).value

GROUP BY (pvc).value, label3

ORDER BY (pvc).value;

AS total_perc, label3

The result is

 value | total_perc |                     label3                     

-------+------------+------------------------------------------------

     1 |       0.42 | Continuous urban fabric

     2 |       3.00 | Discontinuous urban fabric

     3 |       1.19 | Industrial or commercial units

     7 |       0.46 | Mineral extraction sites

    16 |       1.19 | Fruit trees and berry plantations

    18 |       2.79 | Pastures

    19 |       0.87 | Annual crops associated with permanent crops

    20 |       7.23 | Complex cultivation patterns

    21 |       9.93 | Land principally occupied by agriculture

    23 |      16.44 | Broad-leaved forest

    24 |      10.54 | Coniferous forest

    25 |      32.21 | Mixed forest

    26 |       2.21 | Natural grasslands

    27 |       2.15 | Moors and heathland

    29 |       5.60 | Transitional woodland-shrub

    31 |       0.69 | Bare rocks

    32 |       2.25 | Sparsely vegetated areas

    41 |       0.81 | Water bodies

Associate Environmental Characteristics
with GPS Locations

After this general introduction to the use of spatial SQL to explore spatial layers,
you can now use these tools to associate environmental characteristics with GPS
positions. You can find a more extended introduction to spatial SQL in Obe and
Hsu (2011). The goal here is to automatically transform position data from simple
points to objects holding information about the habitat and conditions where the
animals were located at a certain moment in time. You will use the points to
automatically extract, by the mean of an SQL trigger, this information from other
ecological layers. The first step is to add the new fields of information into the
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main.gps_data_animals table. You will add columns for the name of the admin-
istrative unit to which the GPS position belongs, the code for the land cover it is
located in, the altitude from the digital elevation model (which can then be used as
the third dimension of the point), the id of the closest meteorological station and
the distance to the closest road:

ALTER TABLE main.gps_data_animals 

  ADD COLUMN pro_com integer;

ALTER TABLE main.gps_data_animals 

  ADD COLUMN corine_land_cover_code integer;

ALTER TABLE main.gps_data_animals 

  ADD COLUMN altitude_srtm integer;

ALTER TABLE main.gps_data_animals 

  ADD COLUMN station_id integer;

ALTER TABLE main.gps_data_animals 

  ADD COLUMN roads_dist integer;

These are several common examples of environmental information that can be
associated with GPS positions, and others can be implemented according to spe-
cific needs. It is important to keep in mind that these spatial relationships are
implicitly determined by the coordinates of the elements involved; you do not
necessarily have to store these values in a table as you can compute them on the fly
whenever you need. Moreover, you might need different information according to
the specific study (e.g. the land cover composition in an area of 1 km around each
GPS position instead of the value of the pixel where the point is located). Com-
puting these spatial relationships on the fly can require significant time, so in some
cases, it is preferable to run the query just once and permanently store the most
relevant parameters for your specific study (think about what you will most likely
use often). Another advantage of making the relations explicit within tables is that
you can then create indexes on columns of these tables. This is not possible with
on-the-fly sub-queries. Making many small queries and hence creating many tables
and indexing them along the way is generally more efficient in terms of processing
time than trying to do everything in a long and complex query. This is not nec-
essarily true when the data set is small enough, as indexes are mostly efficient on
large tables. Sometimes, the time necessary to write many SQL statements and the
associated indexes exceed the time necessary to execute them. In that case, it
might be more efficient to write a single, long and complex statement and forget
about the indexes. This does not apply to the following trigger function, as all the
ecological layers were well indexed at load time and it does not rely on inter-
mediate sub-queries of those layers.

The next step is to implement the computation of these parameters inside the
automated process of associating GPS positions with animals (from gps_data to
gps_data_animals). To achieve this goal, you have to modify the trigger function
tools.new_gps_data_animals. In fact, the function tools.new_gps_data_animals is
activated whenever a new location is inserted into gps_data_animals (from
gps_data). It adds new information (i.e. fills additional fields) to the incoming
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record (e.g. creates the geometry object from latitude and longitude values) before
it is uploaded into the gps_data_animals table in the code, NEW is used to ref-
erence the new record not yet inserted). The SQL code that does this is below. The
drawback of this function is that it will slow down the import of a large set of
positions at once (e.g. millions or more), but it has little impact when you manage
a continuous data flow from sensors, even for a large number of sensors deployed
at the same time.

    ORDER BY ST_Distance_Spheroid(thegeom, geom, 'SPHEROID["WGS 84",

6378137,298.257223563]')

    LIMIT 1);

  NEW.roads_dist = 

    (SELECT ST_Distance(thegeom::geography, geom::geography)::integer 

    FROM env_data.roads 

    ORDER BY ST_distance(thegeom::geography, geom::geography) 

    LIMIT 1);

END IF;

RETURN NEW;

END;$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.new_gps_data_animals() 

IS 'When called by the trigger insert_gps_positions (raised whenever a new 

position is uploaded into gps_data_animals) this function gets the longitude

and latitude values and sets the geometry field accordingly, computing a set

of derived environmental information calculated intersecting or relating the

position with the environmental ancillary layers.';

CREATE OR REPLACE FUNCTION tools.new_gps_data_animals()

RETURNS trigger AS

$BODY$

DECLARE

  thegeom geometry;

BEGIN

IF NEW.longitude IS NOT NULL AND NEW.latitude IS NOT NULL THEN

  thegeom = ST_SetSRID(ST_MakePoint(NEW.longitude, NEW.latitude), 4326);

  NEW.geom =thegeom;

  NEW.pro_com = 

    (SELECT pro_com::integer 

    FROM env_data.adm_boundaries 

    WHERE ST_Intersects(geom,thegeom)); 

  NEW.corine_land_cover_code = 

    (SELECT ST_Value(rast,ST_Transform(thegeom,3035)) 

    FROM env_data.corine_land_cover 

    WHERE ST_Intersects(ST_Transform(thegeom,3035), rast));

  NEW.altitude_srtm = 

    (SELECT ST_Value(rast,thegeom) 

    FROM env_data.srtm_dem 

    WHERE ST_Intersects(thegeom, rast));

  NEW.station_id = 

    (SELECT station_id::integer 

    FROM env_data.meteo_stations 
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As the trigger function is run during GPS data import, the function only works on
the records that are imported after it was created, and not on data imported pre-
viously. To see the effects, you have to add new positions or delete and reload the
GPS positions stored in gps_data_animals. You can do this by saving the records in
gps_sensors_animals in an external .csv file, and then deleting the records from the
table (which also deletes the records in gps_data_animals in a cascade effect).
When you reload them, the new function will be activated by the trigger that was
just defined, and the new attributes will be calculated. You can perform these steps
with the following commands.

First, check how many records you have per animal:

SELECT animals_id, count(animals_id) 

FROM main.gps_data_animals 

GROUP BY animals_id;

The result is

 animals_id | count 

------------+-------

          4 |  2869

          5 |  2924

          2 |  2624

          1 |  2114

          3 |  2106

Then, copy the table main.gps_sensors_animals into an external file.

COPY

  (SELECT animals_id, gps_sensors_id, start_time, end_time, notes 

FROM main.gps_sensors_animals)

TO

  'c:/tracking_db/test/gps_sensors_animals.csv' 

  WITH (FORMAT csv, DELIMITER ';');

You then delete all the records in main.gps_sensors_animals, which will delete
(in a cascade) all the records in main.gps_data_animals.

DELETE FROM main.gps_sensors_animals;

You can verify that there are now no records in main.gps_data_animals (the
query should return 0 rows).

SELECT * FROM main.gps_data_animals;

The final step is to reload the .csv file into main.gps_sensors_animals. This will
launch the trigger functions that recreate all the records in main.gps_data_animals,
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in which the fields related to environmental attributes are also automatically
updated. Note that, due to the different triggers that imply massive computations,
the query can take several minutes to execute14.

COPY main.gps_sensors_animals 

  (animals_id, gps_sensors_id, start_time, end_time, notes) 

FROM

  'c:/tracking_db/test/gps_sensors_animals.csv' 

  WITH (FORMAT csv, DELIMITER ';');

You can verify that all the fields are updated:

SELECT

  gps_data_animals_id AS id, acquisition_time, pro_com, 

corine_land_cover_code AS lc_code, altitude_srtm AS alt, station_id AS 

meteo, roads_dist AS dist

FROM

  main.gps_data_animals 

WHERE

  geom IS NOT NULL

LIMIT 10;

The result is

  id   |    acquisition_time    | pro_com | lc_code | alt  | meteo | dist 

-------+------------------------+---------+---------+------+-------+------

 15275 | 2005-10-23 22:00:53+02 |   22091 |      18 | 1536 |     5 |  812

 15276 | 2005-10-24 02:00:55+02 |   22091 |      18 | 1519 |     5 |  740

 15277 | 2005-10-24 06:00:55+02 |   22091 |      18 | 1531 |     5 |  598

 15280 | 2005-10-24 18:02:57+02 |   22091 |      23 | 1198 |     5 |  586

 15281 | 2005-10-24 22:01:49+02 |   22091 |      25 | 1480 |     5 |  319

 15282 | 2005-10-25 02:01:23+02 |   22091 |      18 | 1531 |     5 |  678

 15283 | 2005-10-25 06:00:53+02 |   22091 |      18 | 1521 |     5 |  678

 15284 | 2005-10-25 10:01:10+02 |   22091 |      23 | 1469 |     5 |  546

 15285 | 2005-10-25 14:01:26+02 |   22091 |      23 | 1412 |     5 |  571

 15286 | 2005-10-25 18:02:29+02 |   22091 |      23 | 1435 |     5 |  465

You can also check that all the records of every animal are in
main.gps_data_animals:

SELECT animals_id, count(*) FROM main.gps_data_animals GROUP BY animals_id;

14 You can skip this step and speedup the process by simply calculating the environmental
attributes with an update query.

92 F. Urbano et al.



The result is

 animals_id | count 

------------+-------

          4 |  2869

          5 |  2924

          2 |  2624

          1 |  2114

          3 |  2106

As you can see, the whole process can take a few minutes, as you are calcu-
lating the environmental attributes for the whole data set at once. As discussed in
the previous chapters, the use of triggers and indexes to automatise data flow and
speedup analyses might imply processing times that are not sustainable when large
data sets are imported at once. In this case, it might be preferable to update
environmental attributes and calculate indexes in a later stage to speed up the
import process. In this book, we assume that in the operational environment where
the database is developed, the data flow is continuous, with large but still limited
data sets imported at intervals. You can compare this processing time with what is
generally required to achieve the same result in a classic GIS environment based
on flat files (e.g. shapefiles, .tif). Do not forget to consider that you can use these
minutes for a coffee break, while the database does the job for you, instead of
clicking here and there in your favourite GIS application!
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