
Chapter 5
Spatial is not Special: Managing Tracking
Data in a Spatial Database

Ferdinando Urbano and Mathieu Basille

Abstract A wildlife tracking data management system must include the capability
to explicitly deal with the spatial properties of movement data. GPS tracking data
are sets of spatiotemporal objects (locations), and the spatial component must be
properly managed. You will now extend the database built in Chaps. 2, 3 and 4,
adding spatial functionalities through the PostgreSQL spatial extension called
PostGIS. PostGIS introduces spatial data types (both vector and raster) and a large
set of SQL spatial functions and tools, including spatial indexes. This possibility
essentially allows you to build a GIS using the capabilities of relational databases. In
this chapter, you will start to familiarise yourself with spatial SQL and implement a
system that automatically transforms the GPS coordinates generated by GPS sensors
from a pair of numbers into spatial objects.

Keywords PostGIS � Spatial data � GPS tracking � Animal movement

Introduction

A wildlife tracking data management system must include the capability to
explicitly deal with the spatial component of movement data. GPS tracking data
are sets of spatiotemporal objects (locations) that have to be properly managed.

At the moment, your data are stored in the database and the GPS positions are
linked to individuals. While time is correctly managed, coordinates are still just

F. Urbano (&)
Università Iuav di Venezia, Santa Croce 191 Tolentini, 30135 Venice, Italy
e-mail: ferdi.urbano@gmail.com

M. Basille
Fort Lauderdale Research and Education Center, University of Florida,
3205 College Avenue, Fort Lauderdale, FL 33314, USA
e-mail: basille@ase-research.org

F. Urbano and F. Cagnacci (eds.), Spatial Database for GPS Wildlife Tracking Data,
DOI: 10.1007/978-3-319-03743-1_5, � Springer International Publishing Switzerland 2014

53

http://dx.doi.org/10.1007/978-3-319-03743-1_2
http://dx.doi.org/10.1007/978-3-319-03743-1_3
http://dx.doi.org/10.1007/978-3-319-03743-1_4

two decimal numbers (longitude and latitude) and not spatial objects. It is therefore
not possible to find the distance between two points, or the length of a trajectory,
or the speed and angle of the step between two locations. In this chapter, you will
learn how to add a spatial extension to your database and transform the coordinates
into a spatial element (i.e. a point).

Until a few years ago, the spatial information produced by GPS sensors was
managed and analysed using dedicated software (GIS) in file-based data formats
(e.g. shapefiles). Nowadays, the most advanced approaches in data management
consider the spatial component of objects (e.g. a moving animal) as one of its
many attributes: thus, while understanding the spatial nature of your data is
essential for proper analysis, from a software perspective, spatial is (increasingly)
not special. Spatial databases are the technical tools needed to implement this
perspective. They integrate spatial data types (vector and raster) together with
standard data types that store the objects’ other (non-spatial) associated attributes.
Spatial data types can be manipulated by SQL through additional commands and
functions for the spatial domain. This possibility essentially allows you to build a
GIS using the existing capabilities of relational databases. Moreover, while
dedicated GIS software is usually focused on analyses and data visualisation,
providing a rich set of spatial operations, few are optimised for managing large
spatial data sets (in particular, vector data) and complex data structures. Spatial
databases, in turn, allow both advanced management and spatial operations that
can be efficiently undertaken on a large set of elements. This combination of
features is becoming essential, as with animal movement data sets the challenge is
now on the extraction of synthetic information from very large data sets rather than
on the extrapolation of new information (e.g. kernel home ranges from VHF data)
from limited data sets with complex algorithms.

Spatial databases can perform a wide variety of spatial operations, typically

• spatial measurements: calculate the distance between points, polygon area, etc.;
• spatial functions: modify existing features to create new ones, for example, by

providing a buffer around them, intersecting features, etc.;
• spatial predicates: allow true/false queries such as ‘is there a village located

within a kilometre of the area where an animal is moving?’;
• constructor functions: create new features specifying the vertices (points of

nodes) which can make up lines, and if the first and last vertexes of a line are
identical, the feature can also be of the type polygon (a closed line);

• observer functions: query the database to return specific information about a
feature such as the location of the centre of a home range.

Spatial databases use spatial indexes1 to speed up database operations and
optimise spatial queries.

Today, practically all major relational databases offer native spatial information
capabilities and functions in their products, including PostgreSQL (PostGIS),

1 http://workshops.opengeo.org/postgis-intro/indexing.html.

54 F. Urbano and M. Basille

http://workshops.opengeo.org/postgis-intro/indexing.html

IBM DB2 (Spatial Extender), SQL Server (SQL Server 2008 Spatial), Oracle
(ORACLE Spatial), Informix (Spatial Datablade), MYSQL (Spatial Extension)
and SQLite (Spatialite), while ESRI ArcSDE is a middleware application that can
spatially enable different DBMSs.

The Open Geospatial Consortium2 (OGC) created the Simple Features speci-
fication and sets standards for adding spatial functionality to database systems. The
spatial database extension that implements the largest number of OGC specifica-
tions is the open source tool PostGIS for PostgreSQL, and this is one of the main
reasons why PostgreSQL has been chosen as the reference database for this book.
A good reference guide3 for PostGIS can be found in Obe and Hsu (2011) and
Corti et al. (2014).

In this chapter, you will extend your database with the spatial dimension of GPS
locations and start to familiarise yourself with spatial SQL. You will implement a
system that automatically transforms coordinates from a pair of numbers into
spatial objects. You are also encouraged to explore the PostGIS documentation
where the long list of available tools is described.

Spatially Enable the Database

You can install PostGIS using the Application Stack Builder that comes with the
PostgreSQL, or directly from the PostGIS website4. Once PostGIS is installed,
enable it in your database with the following SQL command:

CREATE EXTENSION postgis;

Now, you can use and exploit all the features offered by PostGIS in your
database. The vector objects (points, lines and polygons) are stored in a specific
field of your tables as spatial data types. This field contains the structured list of
vertexes, i.e. coordinates of the spatial object, and also includes its reference
system. The PostGIS spatial (vectors) data types are not topological, although, if
needed, PostGIS has a dedicated topological extension5. As you will explore in
Chaps. 6 and 7, PostGIS can also manage raster data.

2 http://www.opengeospatial.org/.
3 There are also many online resources where you can find useful introductions to get started
(and become proficient) with PostGIS. Here are some suggestions:
http://postgis.refractions.net/
http://postgis.net/docs/manual-2.0/
http://postgisonline.org/tutorials/
http://trac.osgeo.org/postgis/wiki/UsersWikiTutorials.
4 http://postgis.net/install.
5 http://postgis.refractions.net/docs/Topology.html.

5 Spatial is not Special: Managing Tracking Data in a Spatial Database 55

http://dx.doi.org/10.1007/978-3-319-03743-1_6
http://dx.doi.org/10.1007/978-3-319-03743-1_7
http://www.opengeospatial.org/
http://postgis.refractions.net/
http://postgis.net/docs/manual-2.0/
http://postgisonline.org/tutorials/
http://trac.osgeo.org/postgis/wiki/UsersWikiTutorials
http://postgis.net/install
http://postgis.refractions.net/docs/Topology.html

An important setting is the reference system used to store (and manage) your
GPS position data set. In PostGIS, reference systems are identified with a spatial
reference system identifier (SRID) and more specifically the SRID implementation
defined by the European Petroleum Survey Group6 (EPSG). Each reference system
is associated with a unique code. GPS coordinates are usually expressed from
sensors as longitude/latitude, using the WGS84 geodetic datum (geographic
coordinates). This is a reference system that is used globally, using angular
coordinates related to an ellipsoid that approximates the earth’s shape. As a
consequence, it is not correct to apply functions that are designed to work on
Euclidean space, because on an ellipsoid, the closest path between two points is
not a straight line but an arc. In fact, most of the environmental layers available in
a given area are projected in a plane reference system (e.g. Universal Transverse
Mercator, UTM).

PostGIS has two main groups of spatial vector data types: geometry, which
works with any kind of spatial reference, and geography, which is specific for
geographic coordinates (latitude and longitude WGS84).

Special Topic: Geometry and geography data type

The PostGIS geography data type7 provides native support for spatial features represented
in ‘geographic’ coordinates (latitude/longitude WGS84). Geographic coordinates are
spherical coordinates expressed in angular units (degrees). Calculations (e.g. areas,
distances, lengths, intersections) on the geometry data type features are performed using
Cartesian mathematics and straight line vectors, while calculations on geography data type
features are done on the sphere, using more complicated mathematics. For more accurate
measurements, the calculations must take the actual spheroidal shape of the world into
account, and the mathematics become very complicated. Due to this additional com-
plexity, there are fewer (and slower) functions defined for the geography type than for the
geometry type. Over time, as new algorithms are added, the capabilities of the geography
type will expand. In any case, it is always possible to convert back and forth between
geometry and geography types.

It is recommended that you not store GPS position data in some projected reference
system, but instead keep them as longitude/latitude WGS84. You can later project
your features in any other reference system whenever needed. There are two options:
they can be stored as geography data type or as geometry data type, specifying the
geographic reference system by its SRID code, which in this case is 4236. The natural
choice for geographic coordinates would be the geography data type because the
geometry data type assumes that geographic coordinates refer to Euclidean space.
In fact, if you calculate the distance between two points stored as geometry data
type with SRID 4326, the result will be wrong (latitude and longitude are not planar
coordinates so the Euclidean distance between two points makes little sense).

6 http://www.epsg.org/.
7 http://postgis.refractions.net/docs/using_postgis_dbmanagement.html#PostGIS_Geography.

56 F. Urbano and M. Basille

http://www.epsg.org/
http://postgis.refractions.net/docs/using_postgis_dbmanagement.html#PostGIS_Geography

At the moment, the geography data type is not yet supported by all the PostGIS spatial
functions8; therefore, it might be convenient to store GPS locations as the geometry
data type (with the geographic reference system). In this way, you can quickly convert
to the geography data type for calculation with spherical geometry, or project to any
other reference system to use more complex spatial functions and to relate GPS
positions with other (projected) environmental data sets (e.g. land cover, digital
elevation model, vegetation indexes). Moreover, not all the client applications are
able to deal with the geography data type. The choice between the geometry and
geography data types also depends on general considerations about performance
(geography data type involves more precise but also slower computations as it uses a
spherical geometry) and data processes to be supported.

Exploring Spatial Functions

Before you create a spatial field for your data, you can explore some very basic
tools. First, you can create a point feature:

These coordinates are longitude and latitude, although you have not specified
(yet) the reference system. The result is

The long series of characters that are returned depends on how the point is
coded in the database. You can easily and transparently see its textual represen-
tation (ST_AsEWKT or ST_AsText):

In this case, the result is

8 For the list of functions that support the geography data type see http://postgis.refractions.net/docs/
PostGIS_Special_Functions_Index.html#PostGIS_GeographyFunctions.

SELECT

ST_MakePoint(11.001,46.001) AS point;

 point

--

 01010000008D976E1283002640E3A59BC420004740

SELECT ST_AsEWKT(

 ST_MakePoint(11.001,46.001)) AS point;

 point

 POINT(11.001 46.001)

5 Spatial is not Special: Managing Tracking Data in a Spatial Database 57

http://postgis.refractions.net/docs/PostGIS_Special_Functions_Index.html#PostGIS_GeographyFunctions
http://postgis.refractions.net/docs/PostGIS_Special_Functions_Index.html#PostGIS_GeographyFunctions

You can specify the reference system of your coordinates using ST_SetSRID:

SELECT ST_AsEWKT(

 ST_SetSRID(ST_MakePoint(11.001,46.001), 4326))AS point;

This query returns

 point

 SRID=4326;POINT(11.001 46.001)

You can project the point in any other reference system. In this example, you
project (ST_Transform) the coordinates of the point in UTM32 WGS84 (SRID
32632):

SELECT

 ST_X(

 ST_Transform(

 ST_SetSRID(ST_MakePoint(11.001,46.001), 4326), 32632))::integer

 ST_y(

 ST_Transform(

 ST_SetSRID(ST_MakePoint(11.001,46.001), 4326), 32632))::integer

AS x_utm32,

AS y_utm32;

The result is

 x_utm32 y_utm32 |

---------+---------

 654938 5096105|

Here, you create a simple function to automatically find the UTM zone at
defined coordinates:

 lon := longitude;

CREATE OR REPLACE FUNCTION tools.srid_utm(longitude double precision,latitude

double precision)

RETURNS integer AS

$BODY$

DECLARE

 srid integer;

 lon float;

 lat float;

BEGIN

 lat := latitude;

58 F. Urbano and M. Basille

IF ((lon > 360 or lon < -360) or (lat > 90 or lat < -90)) THEN

 RAISE EXCEPTION 'Longitude and latitude is not in a valid format (-360 to

360; -90 to 90)';

ELSEIF (longitude < -180)THEN

 lon := 360 + lon;

ELSEIF (longitude > 180)THEN

 lon := 180 - lon;

END IF;

IF latitude >= 0 THEN

 srid := 32600 + floor((lon+186)/6);

ELSE

 srid := 32700 + floor((lon+186)/6);

END IF;

RETURN srid;

END;

$BODY$

LANGUAGE plpgsql VOLATILE STRICT

COST 100;

COMMENT ON FUNCTION tools.srid_utm(double precision, double precision)

IS 'Function that returns the SRID code of the UTM zone where a point (in

geographic coordinates) is located. For polygons or line, it can be used

giving ST_x(ST_Centroid(the_geom)) and ST_y(ST_Centroid(the_geom)) as

parameters. This function is typically used be used with ST_Transform to

project elements with no prior knowledge of their position.';

Here is an example to see the SRID of the UTM zone of the point at coordinates
(11.001, 46.001):

SELECT TOOLS.SRID_UTM(11.001,46.001) AS utm_zone;

The result is

 utm_zone

 32632

You can use this function to project points when you do not know the UTM
zone:

SELECT

 ST_AsEWKT(

 ST_Transform(

 ST_SetSRID(ST_MakePoint(31.001,16.001), 4326),

 TOOLS.SRID_UTM(31.001,16.001))

) AS projected_point;

5 Spatial is not Special: Managing Tracking Data in a Spatial Database 59

The result is

 projected_point

 SRID=32636;POINT(286087.858226893 1770074.92410008)

If you want to allow the user basic_user to project spatial data, you have to
grant permission on the table spatial_ref_sys:

GRANT SELECT ON TABLE spatial_ref_sys TO basic_user;

Now, you can try to compute the distance between two points. You can try with
geographic coordinates as geometry data type:

SELECT

 ST_Distance(

 ST_SetSRID(ST_MakePoint(11.001,46.001), 4326),

 ST_SetSRID(ST_MakePoint(11.03,46.02), 4326)) AS distance;

The result is

 distance

 0.0346698716467224

As you can see, the result is given in the original unit (decimal degrees) because
the geometry data type, which is the standard setting unless you explicitly specify
the geography data type, applies the Euclidean distance to the points in geographic
coordinates. In fact, distance between coordinates related to a spheroid should not
be computed in Euclidean space (the minimum distance is not a straight line but a
great circle arc). PostGIS offers many options to get the real distance in meters
between two points in geographic coordinates. You can project the points and then
compute the distance:

SELECT

 ST_Distance(

 ST_Transform(

 ST_SetSRID(ST_MakePoint(11.001,46.001), 4326), 32632),

 ST_Transform(

 ST_SetSRID(ST_MakePoint(11.03,46.02), 4326),32632)) AS distance;

60 F. Urbano and M. Basille

The result (in meters) is

 distance

 3082.64215399684

You can also use a specific function to compute distance on a sphere
(ST_Distance_Sphere):

SELECT

 ST_Distance_Sphere(

 ST_SetSRID(ST_MakePoint(11.001,46.001), 4326),

 ST_SetSRID(ST_MakePoint(11.03,46.02), 4326)) AS distance;

The result (in meters) is

 distance

 3078.8604714608

A sphere is just a rough approximation of the earth. A better approximation, at
cost of more computational time, is given by the function ST_Distance_Spheroid
where you have to specify the reference ellipsoid:

SELECT

 ST_Distance_Spheroid(

 ST_SetSRID(ST_MakePoint(11.001,46.001), 4326),

 ST_SetSRID(ST_MakePoint(11.03,46.02), 4326),

 'SPHEROID["WGS 84",6378137,298.2257223563]') AS distance;

The result is

 distance

 3082.95263824183

One more option is to ‘cast’ (transform a data type into another data type using ‘::’)
geometry as geography. Then, you can compute distance and PostGIS will execute
this operation taking into account the nature of the reference system:

SELECT

 ST_Distance(

 ST_SetSRID(ST_MakePoint(11.001,46.001), 4326)::geography,

 ST_SetSRID(ST_MakePoint(11.03,46.02), 4326)::geography) AS distance;

5 Spatial is not Special: Managing Tracking Data in a Spatial Database 61

The result is

 distance

 3082.95257067079

You can compare the results of the previous queries to see the different outputs.
They are all different as a result of the different methods (and associated
approximation) used to calculate them. The slowest and most precise is generally
thought to be ST_Distance_Spheroid.

Another useful feature of PostGIS is the support of 3D spatial objects, which
might be relevant, for example, for avian or marine species, or terrestrial species
that move in an environment with large altitudinal variations. Here is an example
that computes distances in a 2D space using ST_Distance and in a 3D space using
ST_3DDistance, where the vertical displacement is also considered:

SELECT

 ST_Distance(
 ST_Transform(

 ST_SetSRID(ST_MakePoint(11.001,46.001), 4326), 32632),
 ST_Transform(

 ST_SetSRID(ST_MakePoint(11.03,46.02), 4326),32632)) AS distance_2D,
 ST_3DDistance(

 ST_Transform(
 ST_SetSRID(ST_MakePoint(11.001,46.001, 0), 4326), 32632),

 ST_Transform(
 ST_SetSRID(ST_MakePoint(11.03,46.02, 1000), 4326),32632)) AS distance_3D;

The result is

 distance_2d distance_3d |

------------------+------------------

 3082.64215399684 3240.78426458755|

Not all PostGIS functions support 3D objects, but the number is quickly
increasing.

Transforming GPS Coordinates into a Spatial Object

Now, you can create a field with geometry data type in your table (2D point feature
with longitude/latitude WGS84 as reference system):

ALTER TABLE main.gps_data_animals

 ADD COLUMN geom geometry(Point,4326);

62 F. Urbano and M. Basille

You can create a spatial index:

CREATE INDEX gps_data_animals_geom_gist

 ON main.gps_data_animals

 USING gist (geom);

You can now populate it (excluding points that have no latitude/longitude):

UPDATE

 main.gps_data_animals

SET

 geom = ST_SetSRID(ST_MakePoint(longitude, latitude),4326)

WHERE

 latitude IS NOT NULL AND longitude IS NOT NULL;

At this point, it is important to visualise the spatial content of your tables.
PostgreSQL/PostGIS offers no tool for spatial data visualisation, but this can be
done by a number of client applications, in particular GIS desktop software like
ESRI ArcGIS 10.* or QGIS. QGIS9 is a powerful and complete open source
software. It offers all the functions needed to deal with spatial data. QGIS is the
suggested GIS interface because it has many specific tools for managing and
visualising PostGIS data. Especially remarkable is the tool ‘DB Manager’. In
Fig. 5.1, you can see a screenshot of the QGIS interface to insert the connection
parameters to the database.

Now, you can use the tool ‘Add PostGIS layer’ to visualise and explore the GPS
position data set (see Fig. 5.2). The example is a view zoomed in on the study area
rather than all points, because some outliers (see Chap. 8) are located very far from
the main cluster, affecting the default visualisation. In the background, you have
OpenStreetMap layer loaded using the ‘Openlayer’ plugin.

You can also use ArcGIS ESRI 1010.* to visualise (but not edit, at least at the
time of writing this book) your spatial data. Data can be accessed using ‘Query
layers’11. A query layer is a layer or stand-alone table that is defined by an SQL
query. Query layers allow both spatial and non-spatial information stored in a
(spatial) DBMS to be integrated into GIS projects within ArcMap. When working
in ArcMap, you create query layers by defining an SQL query. The query is then
run against the tables and viewed in a database, and the result set is added to
ArcMap. Query layers behave like any other feature layer or stand-alone table, so
they can be used to display data, used as input into a geoprocessing tool or
accessed using developer APIs. The query is executed every time the layer is
displayed or used in ArcMap. This allows the latest information to be visible

9 http://www.qgis.org/.
10 http://www.esri.com/software/arcgis.
11 http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/Connecting_to_a_database/.

5 Spatial is not Special: Managing Tracking Data in a Spatial Database 63

http://dx.doi.org/10.1007/978-3-319-03743-1_8
http://www.qgis.org/
http://www.esri.com/software/arcgis
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/Connecting_to_a_database/

Fig. 5.1 Connection to the database from QGIS

Fig. 5.2 GPS positions visualised in QGIS, zoomed in on the study area to exclude outliers

64 F. Urbano and M. Basille

without making a copy or snapshot of the data and is especially useful when
working with dynamic information that is frequently changing.

Automating the Creation of Points from GPS Coordinates

You can automate the population of the geometry column so that whenever a new
GPS position is uploaded in the table main.gps_data_animals, the spatial geometry
is also created. To do so, you need a trigger and its related function. Here is the
SQL code to generate the function:

CREATE OR REPLACE FUNCTION tools.new_gps_data_animals()

RETURNS trigger AS

$BODY$

DECLARE

thegeom geometry;

BEGIN

IF NEW.longitude IS NOT NULL AND NEW.latitude IS NOT NULL THEN

 thegeom = ST_SetSRID(ST_MakePoint(NEW.longitude, NEW.latitude),4326);

 NEW.geom = thegeom;

END IF;

RETURN NEW;

END;$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.new_gps_data_animals()

IS 'When called by a trigger (insert_gps_locations) this function populates

the field geom using the values from longitude and latitude fields.';

And here is the SQL code to generate the trigger:

CREATE TRIGGER insert_gps_location

 BEFORE INSERT

 ON main.gps_data_animals

 FOR EACH ROW

 EXECUTE PROCEDURE tools.new_gps_data_animals();

You can see the result by deleting all the records from the
main.gps_data_animals table, e.g. for animal 2, and reloading them. As you have
set an automatic procedure to synchronise main.gps_data_animals table with the
information contained in the table main.gps_sensors_animals, you can drop the
record related to animal 2 from main.gps_sensors_animals, and this will affect
main.gps_data_animals in a cascade effect (note that it will not affect the original
data in main.gps_data):

5 Spatial is not Special: Managing Tracking Data in a Spatial Database 65

DELETE FROM

 main.gps_sensors_animals

WHERE

 animals_id = 2;

There are now no rows for animal 2 in the table main.gps_data_animals. You
can verify this by retrieving the number of locations per animal:

SELECT

 animals_id, count(animals_id)

FROM

 main.gps_data_animals

GROUP BY

 animals_id

ORDER BY

 animals_id;

The result should be

 animals_id count |

------------+-------

 1 2114

 3 2106

 4 2869

 5 2924

|

|

|

|

Note that animal 2 is not in the list. Now, you reload the record in the
main.gps_sensors_animals:

INSERT INTO main.gps_sensors_animals

 (animals_id, gps_sensors_id, start_time, end_time, notes)

VALUES

 (2,1,'2005-03-20 16:03:14 +0','2006-05-27 17:00:00 +0','End of battery life.

Sensor not recovered.');

You can see that records have been readded to main.gps_data_animals by
reloading the original data stored in main.gps_data, with the geometry field cor-
rectly and automatically populated (when longitude and latitude are not null):

SELECT

 animals_id, count(animals_id) AS num_records, count(geom) AS

num_records_valid

FROM

 main.gps_data_animals

GROUP BY

 animals_id

ORDER BY

 animals_id;

66 F. Urbano and M. Basille

The result is

 animals_id num_records num_records_valid |

------------+-------------+-------------------

 1 2114 1650

 2 2624 2196

 3 2106 1828

 4 2869 2642

 5 2924 2696

|

|

|

|

| |

|

|

|

|

|

You can now play around with your spatial data set. For example, when you
have a number of locations per animal, you can find the centroid of the area
covered by the locations:

SELECT

 animals_id,

 ST_AsEWKT(

 ST_Centroid(

 ST_Collect(geom))) AS centroid

FROM

 main.gps_data_animals

WHERE

 geom IS NOT NULL

GROUP BY

 animals_id

ORDER BY

 animals_id;

The result is

 animals_id centroid

------------+--

 1 SRID=4326;POINT(11.056405072 46.0065913348485)

 2 SRID=4326;POINT(11.0388902698087 46.0118316898451)
 3 SRID=4326;POINT(11.062054399453 46.0229784057986)

 4 SRID=4326;POINT(11.0215063307722 46.0046905791446)

 5 SRID=4326;POINT(11.0287071960312 46.0085975505935)

|

|

|
|

|

|

In this case, you used the SQL command ST_Collect12. This function returns a
GEOMETRYCOLLECTION or a MULTI object from a set of geometries. The
collect function is an ‘aggregate’ function in the terminology of PostgreSQL. This
means that it operates on rows of data, in the same way the sum and mean
functions do. ST_Collect and ST_Union13 are often interchangeable. ST_Collect is
in general orders of magnitude faster than ST_Union because it does not try to
dissolve boundaries. It merely rolls up single geometries into MULTI and MULTI

12 http://postgis.refractions.net/docs/ST_Collect.html.
13 http://postgis.refractions.net/docs/ST_Union.html.

5 Spatial is not Special: Managing Tracking Data in a Spatial Database 67

http://postgis.refractions.net/docs/ST_Collect.html
http://postgis.refractions.net/docs/ST_Union.html

or mixed geometry types into Geometry Collections. The contrary of ST_Collect is
ST_Dump14, which is a set-returning function.

Creating Spatial Database Views

Special Topic: PostgreSQL views

Views are queries permanently stored in the database. For users (and client applications),
they work like normal tables, but their data are calculated at query time and not physically
stored. Changing the data in a table alters the data shown in subsequent invocations of
related views. Views are useful because they can represent a subset of the data contained
in a table; can join and simplify multiple tables into a single virtual table; take very little
space to store, as the database contains only the definition of a view (i.e. the SQL query),
not a copy of all the data it presents; and provide extra security, limiting the degree of
exposure of tables to the outer world. On the other hand, a view might take some time to
return its data content. For complex computations that are often used, it is more convenient
to store the information in a permanent table.

You can create views where derived information is (virtually) stored. First, create a
new schema where all the analysis can be accommodated:

ALTER DEFAULT PRIVILEGES

 IN SCHEMA analysis

 GRANT SELECT ON TABLES

 TO basic_user;

CREATE SCHEMA analysis

 AUTHORIZATION postgres;

 GRANT USAGE ON SCHEMA analysis TO basic_user;

COMMENT ON SCHEMA analysis

IS 'Schema that stores key layers for analysis.';

You can see below an example of a view in which just (spatially valid) posi-
tions of a single animal are included, created by joining the information with the
animal and lookup tables.

CREATE VIEW analysis.view_gps_locations AS

 SELECT

 gps_data_animals.gps_data_animals_id,

 gps_data_animals.animals_id,

 animals.name,

 gps_data_animals.acquisition_time at time zone 'UTC' AS time_utc,

 animals.sex,

 lu_age_class.age_class_description,

 lu_species.species_description,

 gps_data_animals.geom

14 http://postgis.refractions.net/docs/ST_Dump.html.

68 F. Urbano and M. Basille

http://postgis.refractions.net/docs/ST_Dump.html

 FROM

 main.gps_data_animals,

 main.animals,

 lu_tables.lu_age_class,

 lu_tables.lu_species

 WHERE

 gps_data_animals.animals_id = animals.animals_id AND

 animals.age_class_code = lu_age_class.age_class_code AND

 animals.species_code = lu_species.species_code AND

 geom IS NOT NULL;

COMMENT ON VIEW analysis.view_gps_locations

IS 'GPS locations.';

Although the best way to visualise this view is in a GIS environment (in QGIS,
you might need to explicitly define the unique identifier of the view, i.e.
gps_data_animals_id), you can query its non-spatial content with

SELECT

 gps_data_animals_id AS id,

 name AS animal,

 time_utc,

 sex,

 age_class_description AS age,

 species_description AS species

FROM

 analysis.view_gps_locations

LIMIT 10;

The result is something similar to

 65 | Agostino | 2005-03-21 04:01:45 | m | adult | roe deer

 67 | Agostino | 2005-03-21 12:02:19 | m | adult | roe deer

 68 | Agostino | 2005-03-21 16:01:12 | m | adult | roe deer

 69 | Agostino | 2005-03-21 20:01:49 | m | adult | roe deer

 70 | Agostino | 2005-03-22 00:01:24 | m | adult | roe deer

 71 | Agostino | 2005-03-22 04:02:51 | m | adult | roe deer

 72 | Agostino | 2005-03-22 08:03:04 | m | adult | roe deer

 73 | Agostino | 2005-03-22 12:01:42 | m | adult | roe deer

 id | animal | time_utc | sex | age | species

----+----------+---------------------+- -- --+-------+----------

 62 | Agostino | 2005-03-20 16:03:14 | m | adult | roe deer

 64 | Agostino | 2005-03-21 00:03:06 | m | adult | roe deer

Now, you create view with a different representation of your data sets. In this
case, you derive a trajectory from GPS points. You have to order locations per
animal and per acquisition time; then, you can group them (animal by animal) in a
trajectory (stored as a view):

5 Spatial is not Special: Managing Tracking Data in a Spatial Database 69

CREATE VIEW analysis.view_trajectories AS

 SELECT

 animals_id,

 ST_MakeLine(geom)::geometry(LineString,4326) AS geom

 FROM

 (SELECT animals_id, geom, acquisition_time

 FROM main.gps_data_animals

 WHERE geom IS NOT NULL

 ORDER BY

 animals_id, acquisition_time) AS sel_subquery

 GROUP BY

 animals_id;

COMMENT ON VIEW analysis.view_trajectories

IS 'GPS locations - Trajectories.';

In Fig. 5.3, you can see analysis.view_trajectories visualised in QGIS.
Lastly, create another view to spatially summarise the GPS data set using

convex hull polygons (or minimum convex polygons):

CREATE VIEW analysis.view_convex_hulls AS

 SELECT

 animals_id,

 (ST_ConvexHull(ST_Collect(geom)))::geometry(Polygon,4326) AS geom

 FROM

 main.gps_data_animals

 WHERE

 geom IS NOT NULL

 GROUP BY

 animals_id

 ORDER BY

 animals_id;

COMMENT ON VIEW analysis.view_convex_hulls

IS 'GPS locations - Minimum convex polygons.';

The result is represented in Fig. 5.4, where you can clearly see the effect of the
outliers located far from the study area. Outliers will be filtered out in Chap. 8.

This last view is correct only if the GPS positions are located in a relatively
small area (e.g. less than 50 km) because the minimum convex polygon of points
in geographic coordinates cannot be calculated assuming that coordinates are
related to Euclidean space. At the moment, the function ST_ConvexHull does not
support the geography data type, so the correct way to proceed would be to project
the GPS locations in a proper reference system, calculate the minimum convex
polygon and then convert the result back to geographic coordinates. In the
example, the error is negligible.

70 F. Urbano and M. Basille

http://dx.doi.org/10.1007/978-3-319-03743-1_8

Fig. 5.3 Visualisation of the view with the trajectories (zoom on the study area)

Fig. 5.4 Visualisation of the view with MCP (zoom on the study area)

5 Spatial is not Special: Managing Tracking Data in a Spatial Database 71

Vector Data Import and Export

There are different ways to import a shapefile. Compared to the use of tabular data,
e.g. in .csv format, the procedure is even easier because users do not have to create
an empty table before loading the data. The existing import tools do this job
automatically (although in this way you lose control over the data type definition).
In QGIS there are two plugins that support shapefile import into PostGIS. The
QGIS plugin ‘PostGIS Manager’ can do the job with a drag-and-drop procedure.
Together with the PostGIS installation, a useful tool is automatically created:
‘PostGIS Shapefile Import/Export Manager’ (located in the PostGIS installation
folder). The same kind of tool can also be called from within pgAdmin (in the
‘plugin’ menu). The same result can be achieved using shp2pgsql15, a command
line tool. If the original file uses some specific encoding with characters not
supported by standard encoding, the option ‘-W’ can be used to solve the problem.
Another way to import shapefiles is with the GDAL/OGR16 library. In general,
with any tool, when you load the data, you have to correctly define the reference
system, the target table name and the target schema. If the original layer has errors
(e.g. overlapping or open polygons, little gaps between adjacent features) it might
not be correctly imported and in any case it will probably generate errors when
used in PostGIS. Therefore, we strongly recommend that you control the data
quality before importing layers into your database.

If you want to export your (vector) spatial layer stored in the database, the
easiest way is to load the layer in a GIS environment (e.g. QGIS, ArcGIS) and then
simply export to shapefile from there. The ‘PostGIS Manager’ plugin in QGIS
offers advanced tools to perform this task. You can export part of a table or a
processed data set using an SQL statement instead of just the name of the table.
You can also use the tools mentioned above for data import (pgsql2shp, GDAL/
OGR library (ogr2ogr), PostGIS Shapefile Import/Export Manager).

Connection from Client Applications

One of the main advantages of storing and managing your data in a central
database is that you can avoid exporting and importing your data back and forth
between different programs, formats or files. Some client applications commonly
used in connection with PostgreSQL/PostGIS have specific tools to establish the
link with the database (e.g. pgAdmin, QGIS, ArcGIS 10.x). However, as you are
likely using different programs to analyse your data, you need to be able to access
the database from all of them. This problem can be solved using the Open
DataBase Connection (OBDC) which is a protocol to connect to a database in a

15 http://www.bostongis.com/pgsql2shp_shp2pgsql_quickguide_20.bqg.
16 http://www.gdal.org/ogr2ogr.html.

72 F. Urbano and M. Basille

http://www.bostongis.com/pgsql2shp_shp2pgsql_quickguide_20.bqg
http://www.gdal.org/ogr2ogr.html

standardised way independent from programming languages, database systems and
operating systems. ODBC works as a kind of universal translator layer between
your program and the database. Virtually any program that is able to handle data
today supports ODBC in one way or another.

In Chap. 10, you will see how to use a PosgreSQL/PostGIS database in
connection with R.

Special Topic: Create an ODBC driver in MS Windows

In the Windows operating system, you can easily create an ODBC connection to your
PostgreSQL database. First, you have to install the PostgreSQL ODBC driver on your
computer17. Then you go to ‘Control Panel—Date Sources (ODBC)’ or ‘Microsoft ODBC
Administrator’ (according to Windows version), select ‘System DSN’ tag and click
‘Add’)18. Select ‘PostgreSQL Unicode’ and the appropriate version (32 or 64 bit,
according to PostgreSQL and ODBC Administrator versions), and fill the form with the
proper connection parameters. You can check whether it works by clicking ‘Test’, then
click ‘Save’. Now you have the ODBC connection available as system DSN. ‘Data
Source’ is the name that identifies the ODBC driver to your database. Once created, you
can access your database by calling the ODBC driver through its name. You can test your
ODBC connection by connecting the database from, e.g. MS Excel. Sometimes a
spreadsheet is useful to produce simple graphics or to use functions that are specific to this
kind of tool. To connect to your database data you have to create a connection to a table.
Open Excel and select ‘Data—Connection’ and then ‘Add’. Click on the name of the
ODBC driver that you created and select the table you want to open in MS Excel. Go to
‘Data—Existing connections’ and select the connection that you just established. You’ll
be asked where to place this data. You can choose the existing worksheet or specify a new
worksheet. Take your decision and press OK. Now you have your database data visualised
in an Excel spreadsheet. Spatial data are visualised as binary data format, and therefore
they cannot be properly ‘read’. If you want to see the coordinates of the geometry behind,
you can use a PostGIS function like ST_AsText or ST_AsEWKT. Tables are linked to the
database. Any change in Excel will not affect the database, but you can refresh the table in
Excel by getting the latest version of the linked tables.

References

Corti P, Mather SV, Kraft TJ, Park B (2014) PostGIS Cookbook. Packt Publishing LTD.,
Birmingham, UK

Obe OR, Hsu LS (2011) PostGIS in action. Manning Publications Company, Greenwich

17 http://www.postgresql.org/ftp/odbc/versions/msi/.
18 This process might vary according to the Windows version.

5 Spatial is not Special: Managing Tracking Data in a Spatial Database 73

http://dx.doi.org/10.1007/978-3-319-03743-1_10
http://www.postgresql.org/ftp/odbc/versions/msi/

	5 Spatial is not Special: Managing Tracking Data in a Spatial Database
	Abstract
	Introduction
	Spatially Enable the Database
	Exploring Spatial Functions
	Transforming GPS Coordinates into a Spatial Object
	Automating the Creation of Points from GPS Coordinates
	Creating Spatial Database Views
	Vector Data Import and Export
	Connection from Client Applications
	References

