
248  |  	 wileyonlinelibrary.com/journal/jane� J Anim Ecol. 2020;89:248–267.© 2019 The Authors. Journal of Animal Ecology 
© 2019 British Ecological Society

1  | A MOVEMENT‐ECOLOGY 
BACKGROUND

Animal movement plays a crucial role in ecological and evolution‐
ary processes, from the individual level to ecosystem level (Clobert, 

Danchin, Dhondt, & Nichols, 2001; Dingle, 1996; Nathan et al., 2008). 
However, studying animal movement has presented challenges to 
researchers, as individuals are often difficult to follow for extended 
time periods and over large distances. Over recent decades, de‐
creases in the size and cost of animal‐borne sensors or biologging 
devices have led to an exponential increase in their use. This has sub‐
stantially improved our understanding of how and why animals move 
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Abstract
1.	 The advent of miniaturized biologging devices has provided ecologists with unprec‐

edented opportunities to record animal movement across scales, and led to the col‐
lection of ever‐increasing quantities of tracking data. In parallel, sophisticated tools 
have been developed to process, visualize and analyse tracking data; however, many 
of these tools have proliferated in isolation, making it challenging for users to select 
the most appropriate method for the question in hand. Indeed, within the r software 
alone, we listed 58 packages created to deal with tracking data or ‘tracking packages’.

2.	 Here, we reviewed and described each tracking package based on a workflow 
centred around tracking data (i.e. spatio‐temporal locations (x, y, t)), broken down 
into three stages: pre‐processing, post‐processing and analysis, the latter consist‐
ing of data visualization, track description, path reconstruction, behavioural pat‐
tern identification, space use characterization, trajectory simulation and others.

3.	 Supporting documentation is key to render a package accessible for users. Based 
on a user survey, we reviewed the quality of packages' documentation and identi‐
fied 11 packages with good or excellent documentation.

4.	 Links between packages were assessed through a network graph analysis. 
Although a large group of packages showed some degree of connectivity (either 
depending on functions or suggesting the use of another tracking package), one 
third of the packages worked in isolation, reflecting a fragmentation in the r move‐
ment‐ecology programming community.

5.	 Finally, we provide recommendations for users when choosing packages, and for 
developers to maximize the usefulness of their contribution and strengthen the 
links within the programming community.
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(Hussey et al., 2015; Kays, Crofoot, Jetz, & Wikelski, 2015; Nathan 
et al., 2008). Technological advancements have also enabled a wide 
range of sensors to be used by ecologists, which can be integrated to 
remotely record a suite of metrics, including longitude and latitude 
(x, y), altitude or depth (z), acceleration, and in situ environmental 
conditions (Cagnacci, Boitani, Powell, & Boyce, 2010; Wilmers et al., 
2015; Wilson, Shepard, & Liebsch, 2008). From these multiple sen‐
sors, fine‐scale behaviours and physiological states can be inferred 
(Halsey, Green, Wilson, & Frappell, 2009; Rutz & Hays, 2009).

The increase in quantity and complexity of biologging data re‐
quires appropriate analytical and software tools that aid processing 
and interpretation of data. Those tools should be sound and trans‐
parent to allow for reproducibility of results and computation time 
optimization (Lowndes et al., 2017; Reichman, Jones, & Schildhauer, 
2011; Urbano et al., 2010). Mainly in the last decade, many of these 
tools have been made available for the scientific community in the 
form of packages for the r software (R Core Team, 2018), which has 
facilitated their widespread use and contributed to make r the most 
dynamic programming platform in ecology. However, in order to 
identify the most appropriate function in r for a particular analysis, 
ecologists have to review and evaluate multiple functions within and 
between packages.

The aim of this study was to review the packages created to 
process or analyse a specific type of movement data: tracking 
data. Movement of an organism is defined as a change in the geo‐
graphic location of an individual in time, so movement data can 
be defined by a space and a time component. Tracking data are 
composed of at least 2‐dimensional coordinates (x, y) and a time 
index (t), and can be seen as the geometric representation (the 
trajectory) of an individual's path. The packages reviewed here, 
henceforth called tracking packages, are those explicitly devel‐
oped to either create, transform or analyse tracking data (i.e. (x, y, 
t)), allowing a full workflow from raw data from biologging devices 
to final analytical outcome. For instance, a package that would use 
accelerometer, gyroscope and magnetometer data to reconstruct 
an animal's trajectory via dead‐reckoning, thus transforming those 
data into an (x, y, t) format, would fit into the definition. However, 
a package analysing accelerometry series to detect changes in be‐
haviour would not fit.

Here, we present a workflow for the study of tracking data 
(Figure 1) and review packages that are designed for tracking data, 
including their role in data processing and analysis. The workflow is 
composed of three stages: pre‐processing, post‐processing and data 

analysis. Data pre‐processing is the process by which data are trans‐
formed into the (x, y, t) format, and it would be necessary in cases 
where biologging devices do not provide raw data in the form of 
tracking data, for example for most geolocators or Global Location 
Sensors (GLS), only light intensity is provided. Tracking data may 
not be immediately usable, for example errors or outliers need to 
be identified, or other second‐ or third‐order variables need to be 
derived for the dataset to be ready for analysis; we defined this stage 
of data processing as post‐processing. Finally, the last stage of anal‐
ysis can be divided into data visualization, track description, path 
reconstruction, behavioural pattern identification, space use charac‐
terization, trajectory simulation and others (e.g. population parame‐
ter estimation and interaction between individuals). In each of these 
subsections, we describe the tools provided by tracking packages 
to achieve these goals. When necessary, we also provided a short 
description of the biologging devices and the data they collect, since 
not all readers are familiar with every type of device. An additional 
subsection briefly describes some r packages that do not deal with 
tracking data (as defined above), but were developed to process and 
analyse data from biologging devices such as accelerometers and 
time‐depth recorders.

Since the documentation provided in conjunction with the pack‐
ages is key for rendering them accessible for users, we also review 
supporting documentation and, based on a survey, summarize pack‐
ages based on the clarity of their documentation. The links between 
packages, showing how much they rely on each other and the com‐
patibility between them, are also assessed.

This review is aimed at movement ecologists, whether they are 
potential users or developers of r packages. This study aimed to pro‐
vide users with criteria through which they can select packages for 
specific analyses, and offers developers recommendations to max‐
imize the utility of packages and strengthen the links within the r 
community.

2  | DATA SOURCES

Multiple sources were used to identify tracking packages, mainly 
(a) the spatio‐temporal task view on the Comprehensive r Archive 
Network (CRAN) repository (https​://cran.r-proje​ct.org/web/views/​
Spati​oTemp​oral.html, (b) an updated list of this task on GitHub (https​
://bit.ly/2CWoSD6), (c) packages suggested in the description files 
of other packages, (d) Google search engine and (e) e‐mail/Twitter 

F I G U R E  1   Workflow for data 
processing and analysis in movement 
ecology. Numbers in parenthesis are the 
number of packages dealing with each 
stage of the workflow. Some packages 
may correspond to more than one 
category, except for data visualization, 
where only packages created for that 
purpose are counted

https://cran.r-project.org/web/views/SpatioTemporal.html
https://cran.r-project.org/web/views/SpatioTemporal.html
https://bit.ly/2CWoSD6
https://bit.ly/2CWoSD6
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exchanges with ecologists. For the Google search, search terms were 
(trajectory OR movement OR spatiotemporal) AND package AND r. 
The combined use of these sources provided a large list of packages, 
from which we selected only the ones that matched the definition of 
a tracking package stated in the previous section (Section 1).

The package search and information gathering were done be‐
tween March and August 2018. Tracking packages that were either 
removed from CRAN or described as in a ‘very early version’ on their 
GitHub repositories were discarded. Information on package docu‐
mentation was extracted as follows. Standard documentation was 
categorized as existing if it was available when installing the pack‐
age. A vignette had to be visible from the main page of the repository 
or visible as an output of help(package). A peer‐reviewed article had 
to be either mentioned on the main page of the repository, the vi‐
gnette or in the citation of the package.

It should be noticed that between the period of information 
gathering and the time of publication of this work, new packages 
may have been published, and new versions of the reviewed pack‐
ages containing additional functions could have been released. 
Information on the reviewed version of each package, and links 
to each package repository along with a summary of their main 
characteristics are included in the Zenodo repository (https​://doi.
org/10.5281/zenodo.3483853). In this work, package citation refers 
strictly to the output of citation(package) in r by the time of writing 
the manuscript and the version cited in the reference may not match 
the studied version.

3  | THE r  PACK AGES

Fifty‐eight packages were found to assist with processing and analy‐
sis of tracking data (Figure 1). Some r packages have been developed 
to tackle several of these stages of data processing and analysis, 
while others focus on only one, as shown in Table 1. To identify and 
classify package functions for each specific stage, our main support 
was the standard documentation of the packages, complemented 
with the additional sources of information described in Section 2 
above.

When appropriate, the type of biologging devices from which the 
tracking data originate is described in the text, so that readers who 
are not familiar with these devices have a basic idea of the advan‐
tages and limitations of the devices, and why some packages focus 
on specific issues related to them. The description of the tracking 
packages also includes information on the year each package was 
publicly available (Figure 2), the main repository where the package 
is stored and whether it is actively maintained (hereafter referred to 
as ‘active’). The official repository for r packages is the CRAN repos‐
itory. CRAN enforces technical consistency, with a set of rules such 
as the inclusion of ownership information, cross‐platform portable 
code (i.e. to work with Windows, Mac OS and UNIX platforms), and 
minimum and maximum sizes for package components. The major‐
ity of the packages reviewed in this manuscript are on CRAN; the 
remainder are mostly on GitHub or other repositories (e.g. r‐Forge 

or independent websites). Regarding package maintenance, we con‐
sider that a package hosted on GitHub is actively maintained if a 
‘commit’ (i.e. a contribution) has been made in the last year, and for 
other packages (if they are not also on GitHub), that the most recent 
version of the package is no older than one year (analysis conducted 
in August 2018).

3.1 | Pre-processing

Pre‐processing is required when raw biologging data are not in a 
tracking data format. The methods used for pre‐processing depend 
heavily on the type of biologging device used. Among the tracking 
packages, 6 are focused on GLS, one on radiotelemetry and two use 
accelerometry and magnetometry data.

3.1.1 | GLS data pre-processing

Global Location Sensors are electronic archival tracking devices 
which record ambient light intensity and elapsed time. The tim‐
ings of sunset and sunrise are estimated, latitude is calculated from 
day length, and longitude from the time of local midday relative to 
Greenwich Mean Time (Afanasyev, 2004). GLS can record data for 
several years, and their small size and low mass (<1 g) make them 
suitable for studying long‐distance movements in a wide range of 
species. Several methodologies have been developed to reduce er‐
rors in geographic locations generated from the light data, which are 
reflected by the large number of packages for pre‐processing GLS 
data. We classified these methods into three categories: threshold, 
template‐fitting and twilight‐free.

•	 Threshold methods. Threshold levels of solar irradiance, which are 
arbitrarily chosen, are used to identify the timing of sunrise and 
sunset. The packages that use threshold methods are GeoLight 
(2012, CRAN, inactive) (Lisovski, Hahn, & Hodgson, 2012) and 
probGLS (2016, GitHub, inactive) (Merkel, 2019). GeoLight uses 
astronomical equations from Montenbruck and Pfleger (2013) to 
derive locations from timings of sunrise and sunset, and from sun 
elevation angles. probGLS implements a probabilistic method that 
takes into account uncertainty in sun elevation angle and twilight 
events to estimate locations. Starting with the first known loca‐
tion (where the individual was tagged), it estimates the location 
of the subsequent twilight event which is replicated several times 
adding an error term; it then computes probabilities for each loca‐
tion based on the plausibility of the estimated speed or on envi‐
ronmental conditions (e.g. sea surface temperature SST) (Merkel 
et al., 2016).

•	 Template‐fitting methods. The observed light irradiance levels 
for each twilight are modelled as a function of theoretical light 
levels (i.e. the template). Then, parameters from the model (e.g. 
a slope in a linear regression) are used to estimate the locations. 
The formulation of the model and the parameters used for loca‐
tion estimation vary from method to method (Ekstrom, 2004). 
The packages that use template‐fitting methods are FLightR 

https://doi.org/10.5281/zenodo.3483853
https://doi.org/10.5281/zenodo.3483853
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TA B L E  1   Summary of the functionality of the tracking packages

Workflow stage Categories Method description Data type Package

Pre-processing   Threshold GLS GeoLight, probGLS

Template‐fitting GLS FlightR, trackit, TripEstimation/sgat

Twilight‐free GLS TwilightFree

Triangulation Radio telemetr

Dead‐reckoning Accel. + magnet animalTrack, TrackReconstruction

Post‐processing Data cleaning Filter implausible locations PTT argosfilter, SDLfilter

GPS SDLfilter

Remove duplicates/speed 
filter

Any T‐LoCoH, TrajDataMining, trip

Data compression Rediscretization Any adehabitatLT, trajectories, trajr

Interpolation Any adehabitatLT, amt, trajectories

Douglas‐Peucker Any TrajDataMining, trajectories

Opening window Any TrajDataMining

Savitzky‐Golay Any trajr

Transform to pixels to link 
with remote sensing

Any rsMove

Metric computation 2nd‐ or 3rd‐order variables Any adehabitatLT, amt, bcpa, momentuHMM, 
move, moveHMM, rhr, segclust2d, 
trajectories, trajr, trip

Radio feedr

Acoustic VTrack

Visualization   Animations of tracks Any anipaths, moveVis

Track description   Summary metrics Any amt, movementAnalysis, trajr, marcher

GPS trackeR

Path reconstruction   State‐space models GLS HMMoce, kftrack, ukfsst/kfsst

PTT argosTrack, bsam

Any crawl

Functional movement 
model

Any ctmcmove

Continuous Markov chain 
in gridded space

Any ctmm

Bayesian Brownian bridge 
model

GPS + DR path BayesianAnimalTracker

Transformation of the 
space

GPS + DR path TrackReconstruction

Behavioural pattern 
identification

Clustering techniques Expectation‐maximization 
binary clustering

Any EMbC

Random forest Any m2b

Segmentation Gueguen and Lavielle Any adehabitatLT

Extension of Lavielle Any segclust2d

Behavioural change point 
analysis

Any bcpa

Mechanistic range shift 
analysis

Any marcher

Net displacement models Any migrateR

Hidden Markov‐based 
models

Bayesian state‐space 
model with states

PTT bsam

Hidden Markov models Any lsmnsd, momentuHMM, moveHMM

(Continues)
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(2015, CRAN, active) (Rakhimberdiev & Saveliev, 2019), trackit 
(2012, GitHub, active) (Nielsen, Sibert, Ancheta, Galuardi, & 
Lam, 2012a) and tripEstimation (2007, GitHub, inactive) (Sumner 

& Wotherspoon, 2016; Sumner, Wotherspoon, & Hindell, 
2009). FLightR was specifically developed for avian movement. 
In its state‐space modelling framework (Patterson, Thomas, 
Wilcox, Ovaskainen, & Matthiopoulos, 2008), the locations 
are hidden states and the observation model is a physical 
model of light‐level changes as a function of geographic lo‐
cation and time. A detailed description of the model and the 
package functions can be found in Rakhimberdiev et al. (2015) 
and Rakhimberdiev, Saveliev, Piersma, and Karagicheva (2017), 
respectively. trackit was developed mainly for fish movement 
and light intensity around sunrise and sunset are used as in‐
puts in a state‐space model that includes solar altitude and SST 
as covariates (Lam, Nielsen, & Sibert, 2010). tripEstimation was 
developed for marine organisms. It uses a Bayesian approach 
modelling light level as a function of sun elevation at each plau‐
sible location, prior knowledge of the animal's movement, and 
complementary environmental information (e.g. SST, depth of 
the water column) (Sumner et al., 2009). Although tripEstimation 
is still available on CRAN, it is indicated in its GitHub reposi‐
tory that the package was deprecated in favour of sgat (Lisovski 
et al., 2012; Sumner et al., 2009), which contains functions to 

Workflow stage Categories Method description Data type Package

Space use Home‐range estimation Minimum convex polygon Any adehabitatHR, amt, move, rhr

Density kernel utilization 
distribution

Any adehabitatHR, amt, rhr

Movement‐based utiliza‐
tion distribution

Any adehabitatHR, amt, bbmm, ctmm, mkde, 
move, movementAnalysis, rhr

Local convex hull Any adehabitatHR, amt, rhr, T‐LoCoH

Habitat use Step selection functions Any amt, hab

Generalized linear models Any ctmcmove

Non‐conventional 
approaches

(See text) Radio feedr

Acoustic VTrack

Any moveNT, recurse, rsMove

Trajectory 
simulation

  Movement models fitted 
to data

Any crawl, ctmm, momentuHMM, moveHMM, 
smam

PTT argosTrack, bsam

Movement models with pa‐
rameters defined by user

Any adehabitatLT, moveNT, SiMRiv, trajr

Other Interactions Dyad interaction metrics Any wildlifeDI

Distance and time 
thresholds

Any movementAnalysis, TrajDataMining

Movement similarity Similarity measures 
between trajectories (e.g. 
Frechet)

Any SimilarityMeasures, trajectories

Population size Stochastic model for 
abundance

Radio caribou

Environment conditions Likelihood maximization of 
airspeed model

Any moveWindSpeed

Database management Integrating r and 
PostgreSQL/PostGIS

Any rpostgisLT

TA B L E  1   (Continued)

F I G U R E  2   Number of packages per year of publication. Since 
the packages were reviewed between March and August 2018, this 
last year was incomplete and not included in the graph
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implement both threshold and template‐fitting methods (note 
that the authors of tripEstimation are also the main authors of 
sgat and GeoLight, and that the references to cite the packages 
are the same). For this reason, we consider both tripEstimation 
and sgat as one. Auxiliary packages also exist to detect the tim‐
ing of twilight periods from light data from GLS devices (e.g. 
TwGeos (Wotherspoon, Sumner, & Lisovski, 2016b) and BAStag 
(Wotherspoon, Sumner, & Lisovski, 2016a)). The estimated twi‐
light periods can be later used as inputs in the above‐mentioned 
packages for location estimation.

•	 Twilight‐free methods. It is possible to estimate locations without 
depending on the identification of twilight events. TwilightFree 
(2017, GitHub, active) (Bindoff & Wotherspoon, 2019) uses a hid‐
den Markov model (HMM) where the hidden states are the daily 
geographic locations (the spatial domain is discretized as gridded 
cells) and the observed variable is the observed pattern of light 
and dark over the day (Bindoff, Wotherspoon, Guinet, Hindell, & 
Orme, 2017). SST and land/sea marks can be used as covariates. 
Parameter estimation is performed using functions from the sgat 
package.

3.1.2 | Radio‐tagging data pre-processing

Radio‐tagging (Kenward, 2000) involves the attachment of a radi‐
otransmitter to an animal. The radio signals transmitted (typically 
very‐high‐frequency VHF or ultra‐high‐frequency UHF) are picked 
up by an antenna and transformed into a beeping sound by a re‐
ceiver. As the receiver gets closer to the transmitter, the beeps get 
louder. Location can then be estimated either by triangulation or 
with a method called homing, where the researcher moves towards 
the loudest beeps until the animal has been located. RFID (radio‐fre‐
quency identification data) tags can also be used to record when an 
individual passes close to a receiver without the need to search for 
a signal.

telemetr (2012, GitHub, inactive) (Rowlingson, 2012) implements 
several triangulation methods as well as a maximum‐likelihood pro‐
cedure to estimate locations from bearing data (triangulation infor‐
mation). Since there are no references to the methods in the package 
documentation, it is aimed at users who are already familiar with the 
methods.

3.1.3 | Dead‐reckoning using accelerometry and 
magnetometry data

High‐frequency (e.g. >10 Hz) triaxial accelerometers measure both 
static (gravitational) and dynamic body acceleration (DBA). The static 
component is typically derived using a sliding average over short 
time windows of a few seconds on each axis (Shepard et al., 2008). 
The static component enables determining the animal's body pos‐
ture. The dynamic component is calculated by subtracting the static 
acceleration from the raw acceleration on each axis and provides a 
measure of the animal's movement or velocity as a result of body 
motion. When coupled with time‐activity budgets and validated 

with empirical measurements of metabolic rate, the overall DBA can 
be used to estimate the animal's energy expenditure (Wilson et al., 
2019). High‐frequency triaxial magnetometers measure the geomag‐
netic field strength in the three axes and provide a measure of 3D 
orientation for dead‐reckoning (e.g. Bidder et al., 2015) and for be‐
havioural identification (Williams et al., 2017).

The combined use of magnetometer and accelerometer data, 
especially as provided by modern inertial measurement units, 
which solve the problem of temporal synchronization among dif‐
ferent sensors, and optionally gyroscopes and speed sensors, al‐
lows to reconstruct sub‐second fine‐scale movement paths using 
the dead‐reckoning (DR) technique (Bidder et al., 2015; Wilson, 
Wilson, Link, Mempel, & Adams, 1991). Given an initial known lo‐
cation (e.g. tagging or release location), the DR method uses speed 
and direction movement parameters derived from accelerometer, 
magnetometers and sometimes additional sensors, to reconstruct 
the movement path from one location to the next. Specifically, 
DBA derived from accelerometers can provide a useful metric 
of speed for terrestrial individuals (Bidder et al., 2012), though 
in aerial/aquatic media it may be better to use a speed sensor. 
Magnetometers – after appropriate calibration and correction for 
other sources of magnetism (Bidder et al., 2015), and in combina‐
tion with accelerometers and gyroscopes when available – pro‐
vide fine‐scale measures of heading and direction. However, as 
DR is based on vectorial calculations, it accumulates errors over 
time, further compounded in the presence of passive movements 
caused by currents and drifts. Independent locations, typically 
collected by a GPS recording at lower frequency than the accel‐
erometers and magnetometers, are required to correct for these 
errors (Bidder et al., 2015; Liu, Battaile, Trites, & Zidek, 2015); see 
Section 7 below for further details. Furthermore, the exact math‐
ematical formulas for DR differ in the literature, and most of them 
do not account for 3D movement (see Benhamou (2018) for a com‐
parison of movement properties in 2D and 3D). A discussion on DR 
per se is out of the scope of this work, but we advise users to un‐
derstand the methods behind the packages performing DR before 
using them. animalTrack (2013, CRAN, inactive) (Farrell & Fuiman, 
2013) and TrackReconstruction (2014, CRAN, inactive) (Battaile, 
2014) implement DR to obtain tracks, though use different meth‐
ods. While TrackReconstruction refers to Wilson et al. (2007) for 
DR, animalTrack cites Bowditch (1995).

3.2 | Post‐processing

Post‐processing of tracking data comprises data cleaning (e.g. identifi‐
cation of outliers or errors), compressing (i.e. reducing data resolution 
which is sometimes called resampling) and computation of metrics 
based on tracking data, which are useful for posterior analyses.

3.2.1 | Data cleaning

argosfilter (2007, CRAN, inactive) (Freitas, 2012) and SDLfilter 
(2014, CRAN, active) (Shimada, Jones, Limpus, & Hamann, 2012; 
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Shimada et al., 2016) implement functions to filter implausible plat‐
form terminal transmitter (PTT) locations. Platform terminal (also 
known as Argos) transmitters send signals to polar‐orbital Argos 
satellites, which geographically locate the source of the data. They 
preserve battery life by only needing to transmit signals (rather 
than receiving), leading them to be used for tracking of large‐scale 
migrations, particularly marine mammals and turtles. When the 
tracked animals are under water, the chances of a satellite receiv‐
ing PTT signals decrease, so fewer locations can be estimated, and 
they are likely estimated with fewer satellites, so their accuracy 
also diminishes. PTTs are particularly useful for individuals that 
cannot be recaptured, and hence, a device recovered. Along with 
locations, Argos provides accuracy classes (1, 2, 3, 0, A, B, Z) which 
are associated with different degrees of spatial error (Costa et al., 
2010). argosfilter's algorithm is described in Freitas, Lydersen, 
Fedak, and Kovacs (2007). It essentially removes records where a 
location was not estimated as well as locations that required un‐
realistic travel speeds. SDLfilter allows the removal of duplicates, 
locations estimated with a low number of satellites, biologically 
unrealistic locations based on speed thresholds or turning angles 
and locations above high tide lines. The filtering methods are de‐
scribed in Shimada et al. (2012), Shimada et al. (2016), and they 
are also adapted to GPS data. GPS loggers are perhaps the most 
widely used type of biologging device. Location information from 
GPS can be downloaded directly without any post‐processing. 
GPS receivers collect but do not transmit information, and infer 
their own location based on the location of GPS satellites and the 
time of transmission. Four or more satellites should be visible to 
the receiver to obtain an accurate result (<100 m; able to reach 6 m 
in some cases) (Tomkiewicz, Fuller, Kie, & Bates, 2010), so when 
less satellites are visible, location accuracy can be reduced.

Other packages with functions for cleaning tracking data are T‐
LoCoH (2013, r‐forge, active) (Lyons, Getz & R Development Core 
Team, 2018), TrajDataMining (2017, CRAN, active) (Monteiro, 2018) 
and trip (2006, CRAN, active) (Sumner, 2016). They can be used for 
any tracking data and also contain functions to remove duplicates or 
records with unrealistically high speeds.

3.2.2 | Data compression

Rediscretization or getting data to equal step lengths can be achieved 
with adehabitatLT (2010, CRAN, active) (Calenge, 2006), trajectories 
(2014, CRAN, active) (Pebesma, Klus, & Moradi, 2018) or trajr (2018, 
CRAN, active) (McLean & Volponi, 2018). Regular time‐step interpo‐
lation can be performed using adehabitatLT, amt (2016, CRAN, active) 
(Signer, 2018) or trajectories. Other compression methods include 
Douglas‐Peucker (TrajDataMining and trajectories), opening win‐
dow (TrajDataMining) or Savitzky‐Golay (trajr). For a brief review on 
compression methods, see Meratnia and de By (2004).

rsMove (2017, CRAN, active) (Remelgado, 2018) provides func‐
tions to explore and transform tracking data for a posterior linkage 
with remote sensing data. Location fixes are transformed into pixels 
and grouped into regions. The spatial or temporal resolution of the 

tracking data can be changed to match the resolution of the remote 
sensing data.

3.2.3 | Computation of metrics

Some packages automatically derive second‐ or third‐order move‐
ment variables (e.g. distance and angles between consecutive fixes) 
when transforming the tracking data into the package's data class 
(most packages define their own data classes; see file in Zenodo, 
https​://doi.org/10.5281/zenodo.3483853). These packages are 
adehabitatLT, momentuHMM (2017, CRAN, active) (McClintock 
& Michelot, 2018), moveHMM (2015, CRAN, active) (Michelot, 
Langrock, Patterson, & McInerny, 2016), rhr (2014, GitHub, inac‐
tive) (Signer, 2016) and trajectories. bcpa has a function to compute 
speeds, step lengths, orientations and other attributes from a track. 
amt, move (2012, CRAN, active) (Kranstauber, Smolla, & Scharf, 
2018), segclust2d (2018, CRAN, active) (Patin, Etienne, Lebarbier, & 
Benhamou, 2018), trajr and trip also contain functions for comput‐
ing those metrics, but the user needs to specify which ones they 
need to compute.

feedr (2016, GitHub, active) (LaZerte, 2019) works specifically 
with RFID data (described in Section 3.3 above). Raw RFID data typ‐
ically contain an individual line of data for each read event made by 
each RFID logger. feedr contains functions to read raw data from 
several RFID loggers, and to transform the data of logger detection 
into movement data for each individual, computing statistics such as 
the time of arrival and departure from each logger station, and how 
much time was spent near a station at each visitation.

VTrack (2015, CRAN, active) (Campbell, Watts, Dwyer, & 
Franklin, 2012) handles acoustic telemetry data. Acoustic telemetry 
uses high‐frequency sound (between 30 and 300 kHz) to transmit 
information through water. Tags (transmitters) emit a pulse of sound, 
which is detected by a hydrophone (or an array of hydrophones) 
with an acoustic receiver. The distance at which a transmitter can 
be detected depends on the power and frequency of the tag, and 
the characteristics of the surrounding environment (e.g. background 
noise, water turbidity and temperature) (DeCelles & Zemeckis, 
2014). VTrack was created to deal with VEMCO© data, which has 
a similar structure than RFID; it is composed of transmitter ID, re‐
ceiver ID, datetime stamps and the location of receiver. Like feedr for 
RFID, VTrack can compute statistics such as the time of arrival and 
departure from each receiver, and how much time was spent near a 
receiver at each visitation.

3.3 | Visualization

In this section, we focus on the packages mainly developed for visu‐
alization purposes. Those are anipaths (2017, CRAN, active) (Scharf, 
2018) and moveVis (2017, CRAN, active) (Schwalb‐Willmann, 2018).

They were both conceived for producing animations of tracks. 
anipaths relies on the animation package (Xie, 2013; Xie, Mueller, Yu, 
& Zhu, 2017). Users can specify time steps and seconds per frame 
for animation, add a background map (e.g. Google Maps) and an 

https://doi.org/10.5281/zenodo.3483853
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individual‐level covariate (e.g. migrant and stationary), among oth‐
ers. Consecutive fixes are joined via a spline‐based interpolation and 
a confidence interval for the interpolation of the path for animation 
can be shown.

moveVis is based on a ggplot2 (Wickham, 2016) plotting archi‐
tecture and works with move data class objects. Users can choose 
between ‘true time’ which displays the animation respecting the 
time stamps provided, or ‘simple’ animations where time is not 
taken into account and all individuals are displayed together as if 
their tracks started at time 0. Consecutive fixes are joined via lin‐
ear interpolation. As in anipaths, users can specify the number of 
frames per second and personalize the background map. Statistics 
related to the background layer (e.g. temperature and land cover) 
can also be shown as animated lines or bar plots. For both pack‐
ages, animations can be saved in many different formats such as 
mpeg, mp4 and gif.

3.4 | Track description

amt, movementAnalysis (2013, GitHub, inactive) (Sijben, 2013) and 
trajr compute summary metrics of tracks, such as total distance 
covered, straightness index and sinuosity. It should be noted that 
movementAnalysis depends on adehabitat, which was officially re‐
moved from CRAN in 2018, as it was superseded by adehabitatLT, 
adehabitatHR (2010, CRAN, active) (Calenge, 2006) and adehabi‐
tatMA (Calenge, 2006) in 2010.

trackeR (2015, CRAN, active) (Frick & Kosmidis, 2017) was 
created to analyse running, cycling and swimming data from GPS‐
tracking devices for humans. trackeR computes metrics summa‐
rizing movement effort during each track (or workout effort per 
session). Those metrics include total distance covered, total du‐
ration, time spent moving, work‐to‐rest ratio, averages of speed, 
pace and heart rate.

3.5 | Path reconstruction

Whether it is for the purposes of correcting for sampling errors, or ob‐
taining finer data resolutions or regular time steps, path reconstruction 
is a common goal in movement analysis. Here, we mention methods 
available; however, before choosing a method, users should be aware 
that every method is constructed under unique movement assump‐
tions (either inherent to the mathematical model or constructed for 
a particular species or type of data), and users should refer to the lit‐
erature on the methods first. Packages available for path reconstruc‐
tion are HMMoce (2017, CRAN, active) (Braun, Galuardi, Thorrold, & 
Parrini, 2017), kftrack (2011, GitHub, active) (Sibert, Nielsen, Ancheta, 
Galuardi, & Lam, 2012), ukfsst/kfsst (2012, GitHub, active) (Nielsen, 
Sibert, Ancheta, Galuardi, & Lam, 2012b), argosTrack (2014, GitHub, 
active) (Albertsen, 2018; Albertsen, Whoriskey, Yurkowski, Nielsen, 
& Flemming, 2015), bsam (2016, CRAN, active) (Jonsen, 2016; Jonsen, 
Flemming, & Myers, 2005), BayesianAnimalTracker (2014, CRAN, in‐
active) (Liu, 2014), TrackReconstruction, crawl (2008, CRAN, active) 
(Johnson & London, 2018; Johnson, London, Lea, & Durban, 2008), 

ctmcmove (2015, CRAN, active) (Hanks, 2018) and ctmm (2015, CRAN, 
active) (Fleming & Calabrese, 2019). While the first three focus on 
GLS data, bsam is intended for PTT data, BayesianAnimalTracker and 
TrackReconstruction combine GPS data and DR, and the last three 
could be used with any tracking data.

3.5.1 | Improving location estimation from GLS data

kftrack, kfsst and ukfsst were developed by the same team of trackit, 
described in Section 3.1 above. As trackit, they are mainly focused 
on fish movement. kftrack, ukfsst and kfsst use already estimated 
positions, either by the threshold method or given by the provider, 
and improve those estimations using a 2‐dimensional random walk 
model (Sibert, Musyl, & Brill, 2003). Because of the generality of this 
modelling framework, kftrack could actually be used for any tracking 
data. In addition to the random walk model, kfsst includes SST as a 
covariate in the model (Nielsen, Bigelow, Musyl, & Sibert, 2006), but 
it has been superseded by ukfsst, which implements an optimized 
parameter estimation. For that reason, we consider kfsst and ukfsst 
as one package.

HMMoce, also adapted to fish movement and working with al‐
ready estimated/provided locations, uses HMMs (like TwilightFree) 
and incorporates depth‐temperature profiles and SST as covariates 
in the observed model (Braun et al., 2017).

3.5.2 | Improving location estimation from PTT data

bsam estimates locations by fitting Bayesian state‐space models to 
the data. They offer the possibility of accounting for different move‐
ment patterns using ‘switching models’ or HMMs; if this is opted out, 
first‐difference correlated random walk models (DCRWs) are used. 
It is possible to estimate some of the model parameters for each in‐
dividual and others at the population level (see Jonsen et al. (2013); 
Jonsen (2016) for more details). The argosTrack package fits several 
types of movement models to PTT data (Albertsen et al., 2015), such 
as correlated random walks (CRWs) in discrete and continuous ver‐
sions, and Ornstein‐Uhlenbeck (OU) models, using Laplace approxi‐
mation via Template Model Builder.

3.5.3 | Combining dead‐reckoning and GPS data

Dead‐reckoning is based on vectorial calculations; thus, even small 
errors in speed and/or direction accumulate over time. This can 
be further compounded in the presence of passive movements 
caused by currents and drifts. Independent locations, typically col‐
lected by a GPS recording at lower frequency than the accelerom‐
eters and magnetometers, are required to correct for these errors. 
TrackReconstruction provides a function that, after computing DR, 
forces the estimated locations to go through the known GPS points 
via space transformation, which returns a path with good shape but 
with biased length and orientation. BayesianAnimalTracker does not 
assume GPS to give the ‘true locations’. Instead, it implements a 
Bayesian approach to correct for biases, assuming a Brownian bridge 
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prior and using GPS points and an already estimated DR path to ob‐
tain a posterior of the sequence of locations. The posterior mean 
can be used as an estimate of the track, and the posterior standard 
error provides a measure of uncertainty about the estimated path 
(Liu, Zidek, Trites, & Battaile, 2016).

In Bidder et al. (2015), the speed component is expressed as a 
linear equation, where the values of the coefficients are corrected 
iteratively until the dead‐reckoned paths and ground‐truth positions 
(e.g. GPS data) match. They also propose computing a correction fac‐
tor for the heading vector. This method allows for correcting within 
the DR procedure, but has not been implemented in any r package 
so far.

3.5.4 | Modelling movement of general 
tracking data

crawl reconstructs paths by fitting continuous‐time CRW models 
(called CTCRWs) (Johnson et al., 2008) to tracking data. Though it 
can be used for any tracking data, crawl can account for the accuracy 
classes of PTT data to model the error associated with locations. ct‐
mcmove fits a functional movement model (Buderman, Hooten, Ivan, 
& Shenk, 2016) to the data and a set of probable true paths can be 
generated. ctmm fits several continuous movement models such as 
Brownian motion and OU‐based models, selects the best models via 
AIC and allows for prediction (thus path reconstruction) with the se‐
lected model.

3.6 | Behavioural pattern identification

Another common goal in movement ecology is to get a proxy of the 
individual's behaviour through the observed movement patterns, 
based on either the locations themselves or second‐/third‐order var‐
iables such as distance, speed or turning angles. Covariates, mainly 
related to the environment, are frequently used for behavioural pat‐
tern identification.

We classify the methods in this section as follows: (a) non‐se‐
quential classification or clustering techniques, where each fix in the 
track is classified as a given type of behaviour, independently of the 
classification of the preceding or following fixes (i.e. independently 
of the temporal sequence); (b) segmentation methods, which iden‐
tify change in behaviour in time series of movement patterns to cut 
them into several segments; and (c) hidden Markov models, centred 
upon a hidden state Markovian process (representing the sequence 
of non‐observed behaviours) that conditions the observed move‐
ment patterns (Langrock et al., 2012).

3.6.1 | Non‐sequential classification or 
clustering techniques

EMbC (2015, CRAN, active) (Garriga, Palmer, Oltra, & Bartumeus, 
2018) implements the expectation‐maximization binary cluster‐
ing method (Garriga, Palmer, Oltra, & Bartumeus, 2016). m2b (2017, 
CRAN, inactive) (Dubroca & Thiebault, 2017) implements a random 

forest (a wrapper for the randomForest (Liaw & Wiener, 2002) pack‐
age functions) to classify behaviours using a supervised training 
dataset; thus, a dataset of both tracking data and known behaviours 
is needed to train the model.

3.6.2 | Segmentation methods

adehabitatLT, bcpa (2013, CRAN, inactive) (Gurarie, 2014), segclust2d, 
marcher (2017, CRAN, active) (Gurarie & Cheraghi, 2017) and mi‐
grateR (2016, GitHub, active) (Spitz, 2018) implement segmentation 
methods. adehabitatLT presents two of these methods: Guéguen 
(2001) and Lavielle (1999, 2005). bcpa implements the behavioural 
change point analysis (Gurarie, Andrews, & Laidre, 2009). segclust2d 
implements a bivariate extension of Lavielle and is also described as 
an extension of Picard, Robin, Lebarbier, and Daudin (2007) by its 
authors, but there was no documentation on the method by the time 
of the review. Both marcher and migrateR are suited for the analysis 
of migratory behaviour. marcher enables the mechanistic range shift 
analysis method (Gurarie et al., 2017) that identifies changes in loca‐
tions of focal ranges, so migration and resident behaviours can be 
distinguished. The ranging models available in the package can take 
into account autocorrelation in location and in velocity. migrateR 
uses net displacement models to identify migratory, residency and 
nomadic behaviour (Spitz, Hebblewhite, & Stephenson, 2017). The 
models can incorporate factors such as elevation, sensitivity to 
starting date in the series and minimum time out of residence zone, 
among other features.

3.6.3 | Hidden Markov models

In this category, we consider standard HMMs as well as more com‐
plex versions of these models, for example adding hierarchical 
structures, a second observation process for locations (state‐space 
modelling), covariates affecting different components in the model, 
autoregressive processes or a spatial covariance structure. bsam, 
lsmnsd (2016, GitHub, active) (Bastille‐Rousseau, 2019a), moveHMM 
and momentuHMM implement methods that fall in the HMM cat‐
egory. bsam, for PTT data, implements Bayesian state‐space models 
as described in Section 7 above and may incorporate a layer of two 
switching states into the model: one state representing directed fast 
movement and the other representing relatively undirected slow 
movement (Jonsen et al., 2013). lsmnsd uses an HMM approach 
where the observed variable is net‐squared displacement and its 
mixture model distribution is conditioned on three hidden states 
that would correspond to two encamped and one exploratory mode 
(Bastille‐Rousseau et al., 2016); the time spent in each mode and the 
transition probabilities are used to classify the track as migration, 
dispersal, nomadic or sedentary.

moveHMM and momentuHMM are not restricted to two or 
three states. moveHMM implements HMMs incorporating covari‐
ates and allowing for state sequence reconstruction, for example 
sequences of the behavioural proxies, via the Viterbi algorithm. 
In moveHMM, the variables modelled in the observed process are 



     |  257Journal of Animal EcologyJOO et al.

step length and turning angles, or two variables that statistically 
behave as step length and turning angles. momentuHMM imple‐
ments generalized hidden Markov models (McClintock et al., 2012) 
with great flexibility for the choice of observed variables and their 
probability distributions, and covariate incorporation in the mod‐
els. Since HMMs require regular time steps, momentuHMM offers 
a multiple imputation method (McClintock, 2017): it fits a CTCRW 
(from crawl) to the data obtaining regular time‐step realizations 
and then fits an HMM to those realizations; all of this is done mul‐
tiple times. Even if the data classes and model formulation in the 
package differ from moveHMM, many of the HMM‐related func‐
tions are based on moveHMM. moveHMM is more user‐friendly 
than momentuHMM, but momentuHMM offers greater modelling 
possibilities.

3.7 | Space and habitat use characterization

Multiple packages implement functions to help answer questions 
related to where animals spend their time and what role environ‐
mental conditions play in movement or space use decisions, which 
are typically split into two categories: home‐range calculation and 
habitat selection.

3.7.1 | Home range

Several packages allow the estimation of home ranges: adehabitatHR, 
amt, bbmm (2010, CRAN, inactive) (Nielson, Sawyer, & McDonald, 
2013), ctmm, mkde (2014, CRAN, inactive) (Tracey, Sheppard, Zhu, 
Sinkovts, et al., 2014), movementAnalysis, move, rhr and T‐LoCoH. 
They provide a variety of methods, from simple minimum convex 
polygons (MCP) (Mohr, 1947) to more complex probabilistic utiliza‐
tion distributions (UD) (Van Winkle, 1975), potentially accounting for 
the temporal autocorrelation in tracking data, as detailed below.

•	 adehabitatHR contains a comprehensive list of methods to esti‐
mate home ranges: convex hull methods such as MCP, clustering 
techniques, local convex hulls (LoCoH) (Getz et al., 2007) and the 
characteristic hull method Downs and Horner (2009); UD meth‐
ods such as kernel home ranges, also with the modification from 
Benhamou and Cornélis (2010) to account for boundaries, and 
methods to account for temporal autocorrelation between loca‐
tions (Brownian bridge kernel method) (Bullard, 1991); biased ran‐
dom bridge kernel method also known as movement‐based kernel 
estimation (Benhamou, 2011; Benhamou & Cornélis, 2010); and 
product‐kernel algorithm, Horne, Garton, Krone, and Lewis 
(2007).

•	 amt also allows the estimation of home ranges using three com‐
mon approaches not based on movement (MCP, LoCoh and kernel 
UD), as well as movement‐based UDs from fitted step selection 
functions (SSFs, Fortin et al., 2005, see below).

•	 rhr (Signer & Balkenhol, 2015) provides a graphical user inter‐
face to estimate home ranges using several non‐movement‐based 
methods, such as parametric home ranges, MCP, kernel UD or 

local convex hulls, as well as the Brownian bridge kernel method 
(as a wrapper to the adehabitatHR function). Complementary anal‐
yses include time to statistical independence, site fidelity test 
(against random permutation of step lengths and angles), among 
others.

•	 T‐LoCoH is focused on constructing home‐range hulls (Lyons, 
Turner, & Getz, 2013). A time‐scale distance metric and a set of 
different nearest‐neighbour criteria are available to choose which 
points to consider in a same hull. Hull metrics for space use, such 
as number of revisitations (repeated visits of an individual to the 
same hull) and their durations, are also computed. Although the 
package was originally implemented for GPS data, it can be used 
for tracking data in general.

•	 bbmm, movementAnalysis and mkde use Brownian bridge movement 
models to obtain UDs. mkde allows for a 3D extension of the 
Brownian bridges (Tracey, Sheppard, Zhu, Wei, et al., 2014).

•	 move, in turn, calculates UDs of tracking data via dynamic 
Brownian bridge modelling (Kranstauber, Kays, Lapoint, Wikelski, 
& Safi, 2012) or uses MCP for home‐range estimation; for the lat‐
ter, it imports functions from adehabitatHR.

•	 ctmm fits several candidate continuous‐time movement models 
via a variogram regression approach (Fleming et al., 2014), which 
can account for spatial autocorrelation in locations and periodic‐
ity in space use (Péron, Fleming, Paula, & Calabrese, 2016). UDs 
are computed via an autocorrelated kernel estimator, where the 
autocorrelation term comes from the movement model previously 
fitted (Fleming et al., 2015).

3.7.2 | Habitat use

The role of habitat features on animal space use, or habitat selection, 
can be investigated with any of the following four packages.

•	 hab (2015, GitHub, inactive) (Basille, 2015) enhances several 
utility functions of adehabitatHS (Calenge, 2006), adehabitatHR 
and adehabitatLT, and provides core functions to prepare, fit and 
evaluate SSFs while relying on adehabitatLT classes to handle tra‐
jectories. SSFs essentially investigate habitat selection along the 
trajectory, by comparing habitat features at observed step loca‐
tions with those at alternative random steps taken from the same 
starting point (Thurfjell, Ciuti, & Boyce, 2014).

•	 amt contains functions and wrappers to streamline the process 
of fitting SSFs from pairs of coordinates defining locations, to the 
conditional logistic regression model. It also allows fitting of inte‐
grated step selection functions (iSSFs), in which both movement 
behaviour and resource selection are modelled, and the role of 
environmental variables on each of these processes is investi‐
gated (Avgar, Potts, Lewis, & Boyce, 2016).

•	 In ctmcmove, the role of habitat features is investigated through 
a generalized linear model framework, for which these features 
are rasterized, and the animal track is first imputed via functional 
movement modelling and then discretized in a gridded space 
(more details in Hanks, Hooten, and Alldredge (2015)).
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3.7.3 | Non‐conventional approaches for space use

Other non‐conventional approaches for investigating space use 
from tracking data can be found in moveNT (2017, GitHub, active) 
(Bastille‐Rousseau, 2019b), recurse (2017, CRAN, active) (Bracis, 
Bildstein, & Mueller, 2018), rsMove, feedr and VTrack.

•	 moveNT tackles space use analysis via network graph the‐
ory (Bastille‐Rousseau, Douglas‐Hamilton, Blake, Northrup, & 
Wittemyer, 2018). The procedure could be summarized as fol‐
lows: (a) tracking data are represented over a gridded map and the 
number of transitions between pixels is counted; (b) the adjacency 
matrix, that is the counts of transitions, is then used to compute 
some network metrics at the pixel level; and (c) a Gaussian mix‐
ture model is fitted to one of the metrics (user choice) to cluster 
values in two groups potentially representing patches and inter‐
patch movement.

•	 rsMove implements a procedure to identify feeding sites from 
tracking data as a function of environmental variables (remote 
sensing data). It uses a random forest classification model from 
the caret package (Kuhn, 2018); however, there is no information 
about how to fix the parameters of the model, so users should 
go through the documentation of caret to understand and cali‐
brate the model. An application of the method can be found in 
Remelgado et al. (2017), but the parametrization is not described 
in the manuscript.

•	 recurse aims at computing number of revisitations to predefined 
areas and their duration. These areas can be defined by the user 
by entering their centre of gravity (by default, the fixes in the 
track) and a radius. The vignette gives important criteria to use 
the functions and interpret the results, though there are no ci‐
tations of scientific publications. feedr and VTrack, for radio and 
acoustic telemetry data, respectively, provide statistics on animal 
visits to given logger stations/receivers.

3.8 | Trajectory simulation

Simulating trajectories can be useful to test hypotheses concern‐
ing movement, by comparing the patterns of simulated movement 
from several alternative theoretical models, or the patterns in the 
simulated movement to those of real observed tracks. In addition, 
simulation allows the quantification of estimator uncertainty by 
parametric bootstrapping (e.g. Michelot et al. (2016)). As with 
other types of data analysis, simulations highly depend on the 
model used by the researcher. The tracking packages implement 
trajectory simulation mainly based on hidden Markov models, cor‐
related random walks, Brownian motions, Lévy walks or Ornstein‐
Uhlenbeck processes.

Packages that allow simulation of trajectories from movement 
models fitted to tracking data (i.e. parameters are estimated by 
the models) are moveHMM, momentuHMM (HMMs), bsam (DCRWs), 
crawl (CTCRWs), argosTrack (discrete and continuous CRWs, and 
OU processes) and ctmm (several continuous‐time movement 

models). These packages have been described in previous sec‐
tions, and the simulations are presented as additional features after 
model fitting in their documentation. Another package for model 
fitting and simulation is smam (2013, CRAN, inactive) (Pozdnyakov, 
Elbroch, Hu, Meyer, & Yan, 2018; Pozdnyakov, Elbroch, Labarga, 
Meyer, & Yan, 2019; Pozdnyakov, Meyer, Wang, & Yan, 2014; Yan et 
al., 2014; Yan, Pozdnyakov, & Hu, 2018). It can fit and simulate two 
types of movement models: Brownian motions with measurement 
error (Pozdnyakov et al., 2014) and moving‐resting processes with 
Brownian motion for the moving stage (Yan et al., 2014).

Other packages implement simulation functions when there is no 
previous model fitting to tracking data (i.e. movement parameters are 
known or simulations concern hypothetical mobile organisms). adeha‐
bitatLT proposes trajectory simulation using Brownian motion‐based 
models, Lévy walks, CRWs and bivariate OU motion. trajr allows for 
CRWs, directed random walks (direction is equal to a constant plus a 
small noise), Brownian motion and Lévy walks. moveNT enables sim‐
ulation of movement within and between patches. Movement within 
patches can follow an OU process (wrapping functions from adeha‐
bitatLT) or a two‐states movement model (wrapping functions from 
moveHMM). Movement between patches is simulated via a Brownian 
bridge movement model (from adehabitatLT).

SiMRiv (2016, CRAN, active) (Quaglietta & Porto, 2018) is an‐
other package created for simulation, and it can take into account 
environmental constraints. It allows simulating random walks, 
correlated random walks, multistate movement and constraining 
the area by an environmental resistance variable – defined by the 
user – that conditions the direction of the movement. The avail‐
able documentation gives a detailed explanation of the simulation 
process.

3.9 | Other analyses of tracking data

3.9.1 | Interactions

Interactions between individuals can be assessed using metrics 
from wildlifeDI (2014, CRAN, active) (Long, 2014), which quantifies 
the dynamic interaction between two tracks of distinct individuals 
through several metrics (see Long, Nelson, Webb, and Gee (2014) 
for details). The package relies on ‘ltraj’ objects (adehabitatLT data 
class for trajectories). Other packages that include functions in‐
vestigating interaction are TrajDataMining and movementAnalysis: 
TrajDataMining can identify potential partners based on distance 
and time thresholds fixed by the user and movementAnalysis com‐
putes the expected duration of encounters at each location for 
every pair of IDs, based on a Brownian bridge movement model 
fitted to the tracking data.

3.9.2 | Movement similarity

SimilarityMeasures (2015, CRAN, inactive) (Toohey, 2015) assesses 
similarity between trajectories using metrics such as the longest 
common subsequence (LCSS), Fréchet distance, edit distance and 
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dynamic time warping (DTW). Magdy, Sakr, Mostafa, and El‐Bahnasy 
(2015) provides a brief review on trajectory similarity measures. tra‐
jectories also computes the Fréchet distance for two trajectories.

3.9.3 | Population size

caribou (2011, CRAN, inactive) (Crepeau, Rivest, Couturier, & 
Baillargeon, 2012) was specifically created to estimate population 
size from Caribou tracking data, but can also be used for wildlife 
populations with similar home‐range behaviour. The methods imple‐
mented here are described in Rivest, Couturier, and Crépeau (1998). 
The user needs to specify parameters concerning the size of each 
detected group, the number of collars in each of these groups and 
the detection model to use.

3.9.4 | Inferring environmental conditions

Using tracking data to infer an environmental variable is the ob‐
jective of moveWindSpeed (2016, CRAN, active) (Kranstauber & 
Weinzierl, 2019).. It uses avian tracking data to estimate wind speed 
via a maximum‐likelihood approach (Weinzierl et al., 2016). The es‐
timation is only performed for segments where the bird is circling in 
a thermal, so a function in the package identifies those segments. 
Speed is modelled as a mean with an autocorrelated drift.

3.9.5 | Database management

Finally, rpostgisLT (2016, CRAN, active) (Dukai, Basille, & Bucklin, 
2016) handles database management for trajectory data by integrat‐
ing r and the ‘PostgreSQL/PostGIS’ database system. The package 
relies on adehabitatLT, and allows users to seamlessly transfer ‘ltraj’ 
objects from r to the database, and vice versa, using the correspond‐
ing ‘pgtraj’ data structure in the database.

3.10 | Analysis of biologging but not tracking data

Time‐depth recorders (TDRs) collect data on depth, velocity and 
other parameters as animals move through the water. These biolog‐
ging data by themselves do not allow obtaining tracking data (x, y, t) 
and thus comparable analyses to the ones presented above; how‐
ever, we briefly describe the r packages that could be used to analyse 
TDR and accelerometer data. diveMove (Luque, 2007) and rbl, the 
latter also for accelerometer data, are the two packages implement‐
ing TDR data analysis. diveMove contains functions to identify wet 
and dry periods in the series, calibrate depth and speed sensor read‐
ings, identify individual dives and their phases, summarize statistics 
per dive and plot the data. With rbl, accelerometry data are used for 
identifying prey catch attempts (Viviant, Trites, Rosen, Monestiez, 
& Guinet, 2010) and swimming effort from frequency and magni‐
tude of tail movement (Bras, Jouma'a, Picard, & Guinet, 2016). Other 
functions allow the extraction of summary statistics from dives (e.g. 
maximum depth), fitting broken stick models (i.e. piecewise linear 
regression) to dive series and identifying dive phases.

Accelerometry data are also used in human studies, primarily to 
assess levels of physical activity. Six r packages focus on the anal‐
ysis of human accelerometry data, mainly to describe periodicity 
and levels of activity. accelerometry (Van Domelen, 2018), ggir (van 
Hees et al., 2014, 2015, 2019) and PhysicalActivity (Choi, Beck, Liu, 
Matthews, & Buchowski, 2018) identify wear and non‐wear time of 
the accelerometers. nparACT computes descriptive statistics such 
as interdaily stability, intradaily variability and relative amplitude of 
activity (Blume, Santhi, & Schabus, 2016). acc (Song & Cox, 2016), 
ggir and pawacc (Geraci, 2017; Geraci et al., 2012) classify wear data 
into different levels of activity (e.g. sedentary, moderate and vigor‐
ous) using thresholds given by the user and offer some functions for 
visual representation of the data and descriptive statistics on the 
types of activities. Additionally, acc allows for activity simulation via 
Hidden Markov modelling.

4  | PACK AGE DOCUMENTATION

Documentation in the form of manuals, vignettes (long‐form docu‐
mentation), tutorials or published articles is key to guide the use of a 
package's features, especially if the package contains a large number 
of functions and tools. Without proper user testing and peer editing, 
package documentation can lead to large gaps of understanding and 
limited usefulness of the package. If functions and workflows are not 
explicitly defined, a package's capacity to help users is undermined. 
Vignettes can act as road maps for the user, and published articles 
pertaining to the package help provide context and guidance on the 
internal workings of functions. Moreover, since packages make spe‐
cific methods available for r users, the documentation should not 
only explain how to use the packages but also describe or provide 
references for the methods.

To assess package documentation, an online survey was con‐
ducted between August and October 2018. The survey got 
Institutional Review Board exemption (IRB201802319). Questions 
in the survey regarded helpfulness of package documentation and 
the frequency of package use; it was completed by 225 people. The 
exact formulation of each question in the survey, detailed results 
and a discussion on the representativity of the survey are accessible 
in https​://doi.org/10.5281/zenodo.3483853.

Among 26 packages with at least 10 respondents, we identified 
10 packages as having ‘adequate documentation’, meaning that 
more than 75% of the respondents expressed that the documen‐
tation was either good (allowing the user to do everything they 
wanted and needed to do with the package) or excellent (allowing 
users to do even more than what they initially planned because of 
the excellent quality of the information). These are as follows: mo‐
mentuHMM (93.8%), moveHMM (89.5%), adehabitatLT (88.6%), ade‐
habitatHR (83.2%), EMbC (81.8%), wildlifeDI (81.3%), ctmm (80.0%), 
GeoLight (77.8%), move (76.6%) and recurse (76.5%) (see Figure 3). 
From this group of packages, move offers manuals and vignettes, 
while all the others offer in addition scientific articles centred on 
the package.

https://doi.org/10.5281/zenodo.3483853
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The results of this survey should be used by package developers 
as guidance to decide on whether to improve the documentation of 
their packages so more researchers can use them.

5  | LINKS BET WEEN THE PACK AGES

We analysed the links between tracking packages. If a package 
needs functions that have already been created by another pack‐
age, the developer(s) can use those functions by declaring this de‐
pendency in the description file of the package under ‘Depends on’, 
‘Imports’ or ‘Linking to’ categories. Theoretically, there are some 
differences between the three, but in practice developers mix 
those groups, so we consider them as part of the same concept: 
dependency. A package can also suggest using other packages; for 
instance, a package focused on data analysis can recommend, in 
the case data have to be cleaned first, the use of a package that 
allows post‐processing.

Developers usually define their own data classes for their pack‐
ages. A data class allows them to predefine the minimum require‐
ments that data should have (e.g. dimensions and variables) and 
guarantee that the functions in the package will work if the data are 
in the predefined format. Similarly, if a package uses functions from 
other packages or the developer wants to facilitate the use of other 
packages along with their own, the latter should also provide coer‐
cion methods, that is functions that allow compatibility with data 
classes from these other packages.

The dependency and suggestion information (collected 
in August 2018) was used for a graph analysis of package links 
(Figure 4). Thirty‐nine packages in total showed some level of con‐
nections among them (30 in the form of one large group and three 
other small groups), while 19 (32%) of the packages worked in iso‐
lation. adehabitatLT and move were the most suggested/depended 
on packages with 14 and 8 links to them, respectively (8 and 2, re‐
spectively, were dependencies). Indeed, many packages use func‐
tions compatible with the ‘ltraj’ data class from adehabitatLT and 
some others with the ‘move’ class from move. amt suggests more 

packages than any other (6), and it provides coercion methods for 
data classes from the packages it suggests.

6  | DISCUSSION

As the quantity and diversity of biologging data increase, so does the 
need for suitable statistical techniques and software resources. These 
tools are essential to convert collected data into ecologically mean‐
ingful measures and analyse outputs to test hypotheses. Through a 
systematic search, we identified 58 r packages aimed at processing 
or analysing tracking data. The packages offer tools for data process‐
ing, visualization, computation of statistics for track description, path 
reconstruction, behavioural pattern identification, space use charac‐
terization and trajectory simulation. All the stages of the movement‐
ecology workflow are covered by the reviewed packages. In some 
cases, there is even function overlapping, with more than one package 
implementing the same type of analysis with the same or very similar 
approaches (e.g. animalTrack and TrackReconstruction for DR, bbmm, 
movementAnalysis and mkde for Brownian bridge movement models). A 
type of analysis that was poorly covered was collective motion: mainly 
wildlifeDI and, to a lesser degree, TrajDataMining and movementAnalysis 
allow computing descriptive metrics on encounters between individu‐
als, periods of proximity or other metrics of interaction. The lack of r 
functions to analyse collective movement beyond descriptive statis‐
tics is most likely a reflection of the early stages of this field regard‐
ing the use of tracking data; collective behaviour has mostly relied on 
controlled laboratory‐based studies and theoretical models (Westley, 
Berdahl, Torney, & Biro, 2018). Overall, the review not only highlighted 
the abundance of analytical tools available, but also identified a need 
to improve visibility and accessibility (i.e. documentation) to existing 
packages more than developing new packages.

6.1 | Integration over proliferation

Transparency in science is facilitated by the sharing of data and ana‐
lytical tools, including code. This has resulted in a general tendency 

F I G U R E  3   Packages with good and 
excellent documentation (survey results). 
Text colour in green corresponds to 
packages with standard documentation 
only, blue is for packages with vignettes, 
and purple is for packages that also have 
peer‐reviewed articles published. Only 
results for packages with at least 10 
respondents are shown
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in the scientific community to convert functions into publicly avail‐
able packages. In movement ecology, this has translated into a pro‐
liferation of r packages dealing with tracking data, many of them, 
isolated from all other packages (Figure 4) despite having similar 
goals and methods. While a large number of packages reflect that 
the field is active and that codes for several types of analyses are 
available for the community, such independent proliferation of pack‐
ages makes it hard to maintain an overview of their functionality and 
availability. Here, we presented a list of 58 packages, but the number 
is expected to keep increasing steadily associated with an increased 
possibility of unnecessary redundancy and disconnection between 
the packages. Due to the already overwhelming number of tracking 
packages, we suggest developers only create new packages in the 

future when they represent a new and complementary contribution 
to the scientific and programming community.

While package necessity is not assessed through any repository, 
there is a peer‐review process available for packages through rOpen‐
Sci, a non‐profit initiative founded in 2011 with the goal of making 
scientific data more retrievable and reproducible (http://ropen​sci.
org). Packages submitted to rOpenSci are reviewed by two indepen‐
dent reviewers for readability, usability, usefulness and redundancy. 
The rOpenSci community checks that developers adhere to coding 
‘best practices’ such as unit testing (i.e. testing whether individual 
units of code work correctly), continuous integration (i.e. all changes 
made by developers are immediately tested and reported when 
added to the mainline code base), minimizing code duplication and 

F I G U R E  4   Network representation of the dependency and suggestion between tracking packages. The arrows go towards the 
package the others suggest (dashed arrows) or depend on (solid arrows). Bold font corresponds to active packages. The size of the circle is 
proportional to the number of packages that suggest or depend on this one
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strong documentation. This open review process improves packages 
as it helps developers strengthen their package and coding, while 
gaining additional technical support from rOpenSci's volunteer staff. 
In addition, a couple of journals have partnered with rOpenSci: the 
Journal of Open Source Software (JOSS, https://joss.theoj.org) and 
Methods in Ecology and Evolution (MEE, metho​dsine​colog​yande​
volut​ion.org). JOSS is an open‐access journal for research software 
packages that adheres to similar standards as rOpenSci, and if the 
submitted package has already been accepted to rOpenSci, they can 
be submitted for fast‐track publication at JOSS, in which JOSS edi‐
tors may evaluate based on rOpenSci's reviews alone. MEE can pub‐
lish articles on new r packages and gives authors the option of a joint 
rOpenSci‐MEE review in which the package is reviewed by rOpen‐
Sci, followed by fast‐tracked review of the manuscript by MEE. The 
r Journal (https​://journ​al.r-proje​ct.org/) and, for packages concern‐
ing statistical analysis, the Journal of Statistical Software (https://
besjournals.onlinelibrary.wiley.com/journal/2041210x) are other 
choices of journal that adhere to similar standards as rOpenSci.

6.2 | Recommendations

This work is not intended to tell ecologists exactly which packages to 
use, but to provide them an exhaustive catalog of tracking packages, 
a description of their functions, and show the similarities and dif‐
ferences between them. We suggest researchers use packages with 
good documentation that are actively maintained and that have a 
large number of users. Good documentation facilitates the initial use 
of a package. A regularly maintained package means that there is a 
person or team behind it and that, when an error arises in the pack‐
age, it will likely be fixed rapidly and a new version will be available. A 
package that has a large number of users means greater opportunity 
to (a) identify bugs in the package, calling the attention of the main‐
tainer for a rapid fix, and thus improving functionality, and to (b) ob‐
tain additional guidance on package use from other users. Regarding 
the methods available in the packages, while we previously stated 
the importance of describing them and citing references, it is the 
responsibility of the researchers to select and apply a method if 
they correctly understand it, and not only because it is available in 
a package. Also, with a critical use of packages, researchers should 
feel encouraged to report bugs when they see them, to contribute 
to their improvement.

When developers are working on new packages, we recommend 
they submit to rOpenSci and consider the following criteria:

•	 Contribution: Does your package fill a gap or need? Does a func‐
tion within the package perform a novel task that does not already 
exist in another published package? Can those functions be in‐
stead added to an existing package? Developers should contem‐
plate the possibility (and appropriateness) of contacting authors 
of existing and actively maintained packages to incorporate new 
functions. We also suggest the authors of existing packages to 
be open to integration of new functions (and new collaborators) 
within their package.

•	 Data class coercion: Does the package handle commonly used data 
classes (e.g. spatial classes from sp or ‘ltraj’ from adehabitatLT), so 
that it is compatible with the use of other packages? Since tracking 
packages deal with spatial data, most of them use georeferenced 
data classes. sp data classes (Bivand, Pebesma, & Gomez‐Rubio, 
2013; Pebesma & Bivand, 2005) are the most popular spatial data 
classes (40 out of the 58 packages use them). The recent sf package 
(Pebesma, 2018) aims at providing a simpler and standard imple‐
mentation of geographic objects in r; handling sf objects is as easy 
as handling non‐spatial objects in r, and computationally more ef‐
ficient than using sp. Only one package (crawl) was compatible with 
sf at the time our research was done. Because of its functional‐
ities, we encourage developers to provide coercion methods to sf. 
Regarding data classes for trajectories, ltraj (from adehabitatLT) is 
one of the oldest and most used data classes, but others exist (e.g. 
trip from trip or track from trajectories). Ideally, the community of 
tracking‐package developers should unite to discuss the best data 
class for a trajectory, and, once a consensus is reached, provide 
coercion methods to that class.

•	 Documentation: Is the documentation clear, exhaustive on the 
functions, with method description or references available? The 
latter is even more important if the package implements a new 
method of analysis. Worked examples and vignettes can enable 
researchers to navigate through the package and learn what it 
does more easily, minimizing the need for additional support.

•	 Maintenance: Who will maintain the package over time? Specific 
people are required to maintain the continuity of packages. 
Typically, laboratory PIs or members of a working group/collab‐
oration could take this role in view of the long‐term commitment. 
On CRAN, non‐maintained packages are considered ‘orphaned’ if 
they are not actively maintained and ‘archived’ if they do not pass 
‘r CMD check’ anymore (https​://cran.r-proje​ct.org/src/contr​ib/
Orpha​ned/README).

7  | CONCLUSIONS

This review has served as a road map of the tools implemented 
by the packages for data analysis in movement ecology. In recent 
years, programmers have responded to the need for advanced sta‐
tistical tools to analyse movement data by developing at least 58 r 
tracking packages. However, we emphasize that increased accessi‐
bility and understanding of existing packages (in which documen‐
tation plays a fundamental role), and more integration for package 
development will help the advancement of research in this field, 
allowing researchers to continue to address novel and exciting 
questions.
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