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Abstract. The Mahalanobis distances have been introduced in habitat selection studies for
the estimation of environmental suitability maps (ESMs). The pixels of raster maps of a given
area correspond to points in the multidimensional space defined by the mapped environmental
variables (ecological space). The Mahalanobis distances measure the distances in this space
between these points and the mean of the ecological niche (i.e., the hypothesized optimum for
the species) regarding the structure of the niche. The map of these distances over the area of
interest is an estimated ESM. Several authors recently noted that the use of a single optimum
for the niche of a species may lead to biased predictions of animal occurrence. They proposed
to use instead a minimum set of basic habitat requirements, found by partitioning the
Mahalanobis distances into a restricted set of biologically meaningful axes. However, the
statistical approach they proposed does not take into account the environmental conditions on
the area where the niche was sampled (i.e., the environmental availability), and we show that
including this availability is necessary. We used their approach as a basis to develop a new
exploratory tool, the Mahalanobis distance factor analysis (MADIFA), which performs an
additive partitioning of the Mahalanobis distances taking into account this availability. The
basic habitat requirements of a species can be derived from the axes of the MADIFA. This
method can also be used to compute ESMs using only this small number of basic
requirements, therefore including only the biologically relevant information. We also prove
that the MADIFA is complementary to the commonly used ecological-niche factor analysis
(ENFA). We used the MADIFA method to analyze the niche of the chamois Rupicapra
rupicapra in a mountainous area. This method adds to the existing set of tools for the
description of the niche.

Key words: chamois; ecological-niche factor analysis; environmental suitability maps; exploration;
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INTRODUCTION

The detailed knowledge of species distribution is of

major concern for a large range of ecological topics.

Among the tools available to improve this knowledge,

environmental suitability maps (ESMs) occupy the first

place (Guisan and Zimmermann 2000, Manly et al.

2002, Elith et al. 2006). Such maps are essential for

decision making in wildlife management (Knick and

Rotenberry 1998) and for building conservation plans

(Araujo and Williams 2000).

Most methods developed to build ESMs rely on the

concept of ecological niche (Guisan and Zimmermann

2000). These maps are generally estimated using a

sample of species occurrences on an area mapped for

several environmental variables (e.g., elevation, slope,

vegetation). Each environmental variable defines a

dimension of a multidimensional space, hereafter termed

‘‘ecological space.’’ The values of these variables can be

determined for each species occurrence, so that the

whole set of occurrences defines a cloud of points in the

ecological space, the species niche. Environmental

suitability mapping implies the computation of one

environmental suitability index for each pixel of the

map, based on the position of the corresponding point in

the ecological space relative to the species niche. These

indices are then mapped in the geographical space to

provide an ESM.

The commonly used Mahalanobis distance between

the available point and the mean of the niche is such an

index (Mahalanobis 1948, Clark et al. 1993, Knick and

Dyer 1997, Knick and Rotenberry 1998, Corsi et al.

1999, Farber and Kadmon 2003, Cayuela 2004, Thomp-

son et al. 2006). The mean of the niche is supposed to

reflect the environmental conditions optimal for the

studied species. The Mahalanobis distance for a given

point expresses the distance between this point and the

species optimum in the ecological space, regarding the

niche structure (see Appendix A for a precise graphical

description of these distances). If we assume that smaller

distances correspond to areas that are more likely to be

occupied by the species, the Mahalanobis distances can
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be mapped over the study area to provide a reliable

ESM.

Recently, several authors noted that the mean of the

niche of a species on a given study area can be a poor

proxy for its optimum (Dunn and Duncan 2000,

Rotenberry et al. 2002, 2006, Browning et al. 2005).

More suitable characteristics of the environment found

in another area, but not in the original one, will be

characterized by large Mahalanobis distances, and

therefore low estimated suitability. The Mahalanobis

distances may therefore lead to biased predictions of

animal occurrence under different environmental con-

ditions. These authors proposed to use, instead of this

optimum, a minimum set of basic habitat requirements.

They advocated that the variables that maintain a

consistent value where the species occur (i.e., the

variables with a low ‘‘used’’ variance) are those most

likely to be associated with basic habitat requirements.

For this reason, they argued that the last axes of a

principal component analysis (PCA) of the niche, on

which the variance is the smallest, can be used to define

this basic set. Moreover, they demonstrated that this

PCA is a natural way to partition the Mahalanobis

distances. Therefore, these authors recommended esti-

mating ESMs by computing a reduced-rank Mahalano-

bis distance for each pixel of the map of the study area,

by considering only this restricted set of principal

components. They consider this statistic as the distance

from the pixel to this minimum set of basic require-

ments.

However, although this linear partitioning of the

Mahalanobis distance relies on both solid mathematical

bases and sound biological issues, it is also problematic.

The PCA recommended by these authors is performed

on the table giving the value of the environmental

variables (columns) in the sites used by the species

(rows), without consideration of the availability of the

environmental variables. Note that this table is stan-

dardized before the PCA is applied, so that all the

environmental variables have a unit variance. This

preliminary operation is necessary, as the variables

may not be measured on the same scale (e.g., the

elevation measured in meters and slope measured in

percent). However, this scaling has an unexpected

consequence: maximizing the variance of the standard-

ized niche on the first axes of the PCA is just a way of

maximizing the sum of the squared correlations between

the environmental variables and the first axis (Legendre

and Legendre 1998).

However, the fact that some environmental variables

are strongly correlated among each other does not imply

that these variables cannot be used to define a basic set

of required habitats. For example, hydrobiologists often

measure the velocity, the depth, and the flow of a stream

when they want to study the niche of a fish species (e.g.,

Mäki-Petäys et al. 1997). These variables are often

strongly correlated among each other, even when the

correlations are computed only with the sites used by the

species. These variables are therefore likely to define the

first axis of the PCA of the niche. However, they are

strong limiting factors for many species, in the sense that

the range of variation actually experienced by the species

is very small relative to the range that could be

potentially encountered by the species.

The crucial point here is that the identification of

variables with a ‘‘low’’ variance implies that we know

what a ‘‘normal’’ variance is for these variables: a

reference value is needed. Actually, the used sites are

generally sampled on a given area, which defines the

context in which the niche takes place. The whole set of

pixels of this area defines a cloud of ‘‘available points’’ in

the ecological space, of which the niche is a subset. The

shape of the niche in the ecological space is partly the

result of the influence of this context. Actually, we

defend the idea that the identification of the required

habitat for a species distribution from a sample of used

sites should also take into account the environmental

availability at the time of sampling in some way.

However, the biological issue raised by Rotenberry et

al. (2002, 2006) is important. The definition of a

restricted set of basic habitat requirements could

improve the predictive capabilities of ESMs based on

the Mahalanobis distances. In this paper, we used the

work of Rotenberry et al. (2002, 2006) as a basis to solve

the problem of the identification of the basic habitat

requirements. We therefore developed a new exploratory

approach to tackle the problem, which we called the

‘‘Mahalanobis Distances Factor Analysis’’ (MADIFA).

This approach also performs an additive partitioning of

the Mahalanobis distances, but the first components of

the analysis now explain most of the Mahalanobis

distances for the set of available points on a given area.

The factorial maps of these axes allow both the

exploration of the niche in the ecological space and the

identification of the environmental variables corre-

sponding to basic habitat requirements. The factorial

axes can also be used to compute ESMs on a lower

number of dimensions (and therefore with increased

generality) that take into account a large part of the

niche restriction. We illustrate how this analysis may

find its place among other exploratory tools of the niche

with the analysis of the niche of the chamois (Rupicapra

rupicapra) in a mountainous environment.

THE COMPUTATION OF THE MAHALANOBIS DISTANCES

We assume that the values of P environmental

variables are known for N pixels (where N can be a

random sample or the whole set of pixels of a map). We

consider here that the N available pixels have the same

weight in the analysis, contained in the N 3 N (rows 3

columns) diagonal matrix D¼Diag(1/N ). Moreover, we

consider a set of N utilization weights, summing to one,

which reflects the use of the N pixels by the focus species.

For example, these weights may correspond to the

proportion of locations of the studied species in the

pixels of the map. These weights are stored in an N 3 N
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diagonal matrix Dp. In the rest of this paper, we will

term ‘‘available pixels’’ the whole set of N pixels of the

analysis, and ‘‘used pixels’’ or ‘‘niche’’ the set of pixels

for which the utilization weights are greater than zero.

Let the matrix Z contain the value of the P

environmental variables (columns) in each one of the

N available pixels (rows). The matrix Z is centered and

scaled for the weighting Dp (i.e., respectively, the origin

of the space defined by the columns of Z is located at the

mean and the variance is 1 for all columns of Z). Finally,

let R¼ZT Dp Z be the correlation matrix as the columns

of Z have a unit variance (where ZT is Tthe transpose of

Z).

The squared Mahalanobis distance D2
i between any

available point i (associated to a pixel in the geograph-

ical space) and the mean of the niche provides an index

of the environmental suitability at this place. Let Zi� be

the row vector containing the values of the P environ-

mental variables for the ith pixel (that is, the ith row of

the matrix Z). In these conditions, the squared

Mahalanobis distance between the point i and the mean

of the niche can be computed with

D2
i ¼ Zi�R

�1ZT
i�: ð1Þ

LINEAR PARTITIONING OF THE MAHALANOBIS DISTANCES:

THE POINT OF VIEW OF ROTENBERRY ET AL. (2002, 2006)

Rotenberry et al. (2002, 2006) noted that the

computation of these distances relies on the computa-

tion of the inverse of the matrix R (Eq. 1). This

computation may be performed by its diagonalization

(i.e., the computation of its eigenvectors and eigenval-

ues). More formally,

R ¼ AKAT

where the matrix K is the diagonal matrix containing the

P eigenvalues kj of the matrix R, i.e., Diag(k1, k2, . . . ,

kp), and A is the matrix containing the P eigenvectors aj
of the matrix R concatenated by columns, i.e., [a1, a2,
. . . , aP]. The inverse of the matrix R is given by the

following (Harville 1997):

R�1 ¼ AK�1AT:

Consequently, the Mahalanobis distance between the

point i and the mean of the niche can be computed using

D2
i ¼ Zi�AK�1ATZT

i�: ð2Þ

Rotenberry et al. (2002, 2006) noted that this formula

provides a natural way of partitioning the Mahalanobis

distances, as it is related to the principal components

analysis (PCA) of the niche (i.e., a PCA of the table Z

using the matrix Dp as row weights; as in Fig. 1B). The

axes of this PCA correspond to the eigenvectors of R
(i.e., a1, a2, etc.). The first axes represent the directions

in the ecological space for which the niche width is

maximal. The variance of the niche projected onto a

given axis j of this PCA is the corresponding eigenvalue

kj. Note that because Z has been scaled, this maximized

variance is just the sum of squared correlations between

the environmental variables and the axis j of the PCA

(Legendre and Legendre 1998). The vector Zi� contains

the coordinates of the available point i in the ecological

space. Therefore the coordinate of the available point i

projected onto the jth axis of the PCA is computed by

Zi�aj. The normed coordinate bij of the point i on the jth

factorial axis corresponds to the raw coordinate divided

by the standard deviation of the niche on this axis. Then,

using Eq. 2, it is straightforward to show that the

Mahalanobis distances can be computed by the sum of

the squared bij:

D2
i ¼

XP

j¼1

b2
ij ¼

XP

j¼1

Zi�ajffiffiffiffi
kj

p
 !2

: ð3Þ

Rotenberry et al. (2002, 2006) advocated the use of a

limited set of PCA axes to compute reduced-rank

Mahalanobis distances. They noted that the first axes

of the PCA are unlikely to describe required habitats,

precisely because they thought that the large variance on

these axes indicated that the ecological variation

experienced by the species was large (whereas this

variance is just the sum of squared correlation with the

environmental variables). They proposed instead to

compute the reduced-rank Mahalanobis distances using

the last eigenvectors of the PCA, arguing that the

dimensions on which the niche is the narrowest are likely

to describe required habitats. For example, using the last

R axes of the PCA, the reduced-rank squared Mahala-

nobis distances D̃
2

i is computed using

D̃
2

i ¼
XP

j¼P�R

b2
ij:

SOME REFINEMENTS OF THIS POINT OF VIEW:

THE MADIFA

The three steps to perform the MADIFA

We develop here a new partitioning of the Mahala-

nobis distances, which identifies the directions in the

ecological space for which the niche is the narrowest in

comparison to the width of the cloud of available points

(see Fig. 1). We call it the ‘‘Mahalanobis Distances

Factor Analysis’’ (MADIFA). This analysis is per-

formed in three steps. The first two steps of this analysis

are exactly the approach proposed by Rotenberry et al.

(2002, 2006).

A PCA is first performed on the table Z using the

matrix Dp as row weights, which returns the directions

partitioning the variance of the standardized niche into

orthogonal components (Fig. 1B), i.e., the set of

eigenvectors aj and of eigenvalues kj ( j ¼ 1, . . . , P) of

the matrix R as defined in Eq. 2. Second, the ecological

space is distorted: the correlation structure is removed

by rescaling the variance of all axes to one (Fig. 1C). The

scores of the available pixels in this distorted space are
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stored in the N 3 P matrix B:

B ¼ ZAK�1=2: ð4Þ

The matrix B contains the normed scores bij as defined in

Eq. 3 (Rotenberry et al. 2002, 2006).

Thereafter, we add another step to this approach: we

perform a PCA on matrix B using the uniform row

weights stored in D. This second PCA is the core of the

MADIFA, and we show hereafter that it returns linear

combinations of the environmental variables so that the

width of the niche is the smallest in comparison to the

width of the cloud of available points (Fig. 1D).

Mathematical properties of the second PCA

The matrix being diagonalized is G ¼ BT D B. This

analysis returns a set of P orthogonal eigenvectors vk

stored in a matrix V, and P corresponding eigenvalues hk
stored on the diagonal of the matrix H, so that G ¼
VHVT. The pixel scores are computed by L ¼ BV:

L ¼ ZAK�1=2V: ð5Þ

This formula summarizes the three steps of the

MADIFA (Fig. 1): the factorial axes of this analysis

are found after a rotation (matrix A), a distortion

(matrix K–1/2), and another rotation (matrix V) of the

cloud of available points in the ecological space (matrix

Z). All these transformations of Z can be summarized in

a matrix C ¼ AK–1/2
V. The pixels scores are the linear

combinations of the environmental variables (i.e., L ¼
ZC).

The value maximized on the first axes of the

MADIFA is equal to the following:

FIG. 1. The MADIFA procedure (see The three steps to perform the MADIFA). The black dots are points considered as
available to the species. To each available point is associated one utilization weight proportional to its use by the species (indicated
by a gray circle with an area proportional to this weight). The values of the Mahalanobis distance to the optimum of the niche are
indicated by gray levels (i.e., the darker the shade, the farther from optimum). (A) The ecological space is defined by two
environmental variables, HV1 and HV2, and is centered on the mean of the niche. (B) The first principal component analysis (PCA)
of the niche (PC1 and PC2 are the principal components). (C) The scores of the points on the two principal components are divided
by the square root of their respective eigenvalues. (D) The second PCA (not centered) maximizes the mean-squared Mahalanobis
distances between the available points and the mean of the niche on the first axes, MAD1 and MAD2.
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hj ¼
1

N

XN

i¼1

l2ij ¼

XN

i¼1

1

N
ðlij � l̄

u
j Þ

2

XN

i¼1

uiðlij � l̄
u
j Þ

2

ð6Þ

where lij is the score of the pixel i on the jth axis of the

MADIFA, l̄
u
j is the mean of the scores of the used pixels

on the jth axis of the analysis, and ui is the utilization
weight associated with the pixel i. This result derives

from the observation that the used variance (denomi-

nator of hj) is equal to 1 on the axes of the MADIFA,
and that l̄

u
j ¼ 0 (as the origin of the ecological space is

the mean of the niche).

Thus, the denominator of hj is the variance of the

niche on the first axis of the MADIFA. However, the
numerator is not a variance: it is the mean of the squared

deviations of the available points from the mean of the

scores of used points. Consequently, the MADIFA
indicates the directions where the niche is the narrowest

(low variance) compared to the width of the distribution

of available points. This direction is likely to define a
basic habitat requirement.

We show in Appendix B that

D2
i ¼

XP

j¼1

l2ij: ð7Þ

Note that this result implies that the sum of the

eigenvalues hj over all the axes j of the analysis is equal

to the mean of the squared Mahalanobis distances for
the available pixels. It is therefore possible to compute

the proportion of the mean-squared Mahalanobis

distances explained by each axis.
Now, like Rotenberry et al. (2002, 2006), we can

compute reduced-rank squared Mahalanobis distances

with the set of R first axes (chosen so that the variance of

the niche is the smallest as compared to the variance of
the available points), reflecting the distance between the

available points and the set of basic habitat require-

ments. From Eq. 7, one can derive the reduced-rank
squared Mahalanobis distance:

D̃
2

i ¼
XR

j¼1

l2ij: ð8Þ

The scores of the pixels on the axes of the MADIFA can

be used to draw factorial maps to identify the structures

of the niche in the ecological space (as in Fig. 1D).
Alternatively these scores can be used to map reduced-

rank Mahalanobis distances over the area, to provide

clearer and sharpened environmental suitability maps
(ESMs; using Eq. 8). The biological meaning of the

factorial axes can be found either by using the

coefficients in C or the correlations with the original
environmental variables.

The MADIFA is programmed in the function

‘‘madifa( )’’ of the free package adehabitat (Calenge

2006) for the R software (R Development Core Team

2005). It can be used as a classical exploratory tool

(Legendre and Legendre 1998) to draw a conceptual

model of the studied biological system.

The MADIFA and the ecological-niche factor analysis

The MADIFA is closely related to the ecological-

niche factor analysis (ENFA) developed by Hirzel et al.

(2002). Indeed, these authors noted that basic habitat

requirements are likely to be associated with the

directions of the ecological space where the variance of

the niche is very small in comparison to the variance of

the available points. The ratio of these two variances

computed for a given variable is an index of the

specialization of the species on this variable. The ENFA

is a factor analysis of the niche maximizing this index on

the first axis. More formally, for a given axis j, the

specialization ratio S is equal to

SðwjÞ ¼

XN

i¼1

1

N
ðwij � w a

j Þ
2

XN

i¼1

uiðwij � w u
j Þ

2

ð9Þ

where wij is the score of the ith pixel on the jth axis of the

ENFA, w a
j is the mean of the scores of available points

on the jth axis of the ENFA, and w u
j is the mean of the

scores of the used points on the same axis. Note that

S(wj) is very similar to hj (compare Eq. 6 and Eq. 9). The

only difference is that the former uses the variance of

available points as a measure of the width of the

distribution of available points, while the latter uses the

mean of the squared deviation of available points from

the mean of the scores of used points.

Maximizing the ratio S(wj) is possible only if the

marginality vector has first been extracted from the data

(i.e., the vector connecting the mean of the cloud of

available points to the mean of the cloud of used points;

Hirzel et al. 2002). However, the marginality vector is

often biologically important, and several authors

stressed the need to take into account this vector in

the interpretation of the results (e.g., Hirzel et al. 2002).

Consequently, the available and used points are

projected onto this vector to define a marginality axis

as a first step. The interpretation of the results of the

ENFA includes the interpretation of the scores of used

and available points on this marginality axis.

Note that the ratio hj maximized by the axes of the

MADIFA can be rewritten:

hj ¼
m2

j

v2
j

þ SðwjÞ

where m2
j is the squared difference between the mean of

the scores of used points and the mean of the scores of

available points on the jth axis of the analysis (i.e., the

marginality), and v2
j is the variance of the niche on the

jth axis of the analysis. The MADIFA therefore

February 2008 559MAHALANOBIS DISTANCES FACTOR ANALYSIS



combines the marginality and the specialization into one

single measure of niche restriction.
Thus, the ENFA may be used to complement the

results of the MADIFA as it allows identification of the
part of the Mahalanobis distances corresponding to the

specialization and to the marginality, respectively. Used
jointly, these two approaches lead to a more precise
conceptual model elaborated for the niche of the focus

species. The ENFA can also be used to draw factorial
maps of the niche (Basille et al. 2008).

On the other hand, as the marginality axis does not
have the same mathematical status as the specialization
axes of the ENFA (the marginality axis is orthogonal to

the specialization axes, but the specialization axes are
not orthogonal among each other; Hirzel et al. 2002), it

is often difficult to combine all these axes into one single
index of environmental suitability. So far, existing

methods trying to combine the marginality and special-
ization axes use ad hoc algorithms (Hirzel et al. 2002,
Hirzel and Arlettaz 2003). Although these ENFA-based

methods have proven to return biologically consistent
environmental suitability maps (ESMs; e.g., Bryan and

Metaxas 2007), the MADIFA is probably a better way
to build environmental suitability maps: it returns axes,
all with the same mathematical status, which can be

combined into ESMs in a consistent manner.

APPLICATION: EXPLORATION OF HABITAT

SELECTION BY THE CHAMOIS

We explored the habitat component of the niche of

the chamois (Rupicapra rupicapra; see Plate 1) in open
areas of the wildlife reserve of Les Bauges (French Alps,

458250 N, 6850 E; Fig. 2A). The data were collected

during censuses carried out every year from 1994 to 2004

in June using the same protocol (flash counts; see e.g.,

Houssin et al. 1994). Volunteers and professionals

working in various French wildlife and forest manage-

ment organizations walked along 24 transects and

looked around two fixed points, which were distributed

over the reserve so that all open areas (i.e., nonforested

areas) were visible to the observers. All transects were

traveled simultaneously at dawn by teams of two

observers, and each detected chamois group was located

on a map of the reserve (precision of ;10 m). At the end

of the census, hours and locations of observations were

compared in order to delete the double counts. Because

the study of habitat selection requires a homogeneous

sampling effort, we used the upper elevation limit of the

forests to delimit our study area (6430 ha dominated by

open meadows located at an elevation .1200 m).

Preliminary analysis showed that the number and the

spatial distribution of the detected groups did not vary

greatly among years (C. Calenge and G. Darmon,

unpublished data). We therefore considered the pooled

data set here to reduce these sampling fluctuations.

During the seven years of the study, 650 chamois groups

were detected (Fig. 2B). We split the data set in two, one

for calibration (from 1994 to 2000; 400 groups detected),

and one for validation (from 2001 to 2004; 250 groups

detected). Seventeen environmental variables were in-

cluded in the analysis of the chamois habitat (Table 1,

Fig. 2C). These variables were supposed to reflect the

chamois distribution, either because they reflect the

location of secure areas (e.g., distance to trails, visibility,

slope; von Elsner-Schack 1985), or because they

represent vegetal associations in which the chamois

may search for food (Ferrari et al. 1988, Garcia-

Gonzalez and Cuartas 1996). Note that although we

focused only on the chamois distribution in the open

areas, we also included in the analysis the distance to

forested areas, because these surrounding habitats may

also influence the habitat use by the chamois in open

areas (Hamr 1985).

We first investigated habitat selection using the

calibration data set. Before the application of the

MADIFA, we explored the structure of the environ-

mental composition over the study area, using a

principal component analysis of the table giving the

values of the environmental variables (columns) in the

pixels of the maps of the area (rows). One main pattern

is highlighted (see Appendix C): the elevation, which is

the variable best correlated with the first axis, affects the

value of several environmental variables. Such an

altitudinal structure was expected in this mountainous

area. Areas close to the screes, to the meadows

dominated by Sesleria and Carex sempervirens, and to

the meadows dominated by Carex ferruginea are

generally found at high elevations (Rameau et al. 2001).

We also performed a PCA restricted to the pixels

where chamois were located (i.e., on its habitat). The

altitudinal structure highlighted on the study area was

TABLE 1. Variables included in the ‘‘Mahalanobis Distances
Factor Analysis’’ (MADIFA).

Abbreviation Variable name

Elev elevation
D.Alder distance to alder woods
D.Screes distance to screes
D.Forest distance to forested areas
D.Fodder distance to fodders
D.Brachy distance to meadows dominated by

Brachipodium
D.CarexF distance to meadows dominated by

Carex ferruginea
D.TallHe distance to meadows dominated by

tall herbs
D.Nardus distance to meadows dominated by

Nardus ssp.
D.SeCarS distance to meadows dominated by

Sesleria and Carex sempervirens
D.Rhodo distance to moors dominated by

Rhododendron
D.Trail distance to recreational trails
Hydro hydrography
Slope slope
Sunshine sunshine
Visib visibility (area seen from each pixel,

computed using Elev)
Visib1000 visibility computed within a radius

of 1000 m
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also the main structure of the chamois habitat (Appen-

dix C). The correlation between the first axis of the PCA

of the available points and the first axis of the PCA of

the habitat is very strong (R ¼ �0.87). Actually, the

altitudinal structure is so strong in the study area that it

also affects the shape of the cloud of used points in the

ecological space. However, the fact that the variance of

used pixels is maximal on this direction does not imply

that it does not describe a habitat required by the

chamois, as shown next.

We then studied habitat selection of the chamois with

the MADIFA. We first performed a preliminary Monte

Carlo test to determine whether the habitat selection is

significant in at least one direction of the ecological

space. At each step of the process, we simulated a

random habitat use by the chamois by generating a

uniform distribution of 400 points over the study area,

and we computed the first eigenvalue of the MADIFA

of this simulated data set. We repeated this simulation

500 times to derive a distribution of eigenvalues under

the hypothesis of random habitat use. We finally

compared the first eigenvalue of the MADIFA of the

observed 400 chamois groups to this simulated distri-

bution to derive a P value. There is actually a highly

significant habitat selection value (h1 ¼ 3.7, P , 0.002).

The proportion of the mean of the squared Mahala-

nobis distances explained by each axis j is measured by

the corresponding eigenvalue hj. The exploration of

these eigenvalues helps in choosing a number of axes to

interpret (Fig. 3A). The MADIFA returned one main

eigenvalue (15% of the mean of the squared Mahalano-

bis distances are explained on the first axis). The

FIG. 2. (A) Location of the wildlife reserve of Les Bauges in France; (B) distribution of the chamois detected on the area from
1994 to 2000; and (C) maps of the 17 environmental variables over the area, where levels of each environmental variable increase
from light to dark gray (see Table 1 for the full names of the variables).
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percentage of the mean of the squared Mahalanobis

distances explained by the following axes is much lower

(10.5%, 9.5%, and 7.6% for the second, third, and fourth

axis, respectively). We therefore focused our interpreta-

tion on the first axis of the MADIFA.

The biological meaning of this axis can be deduced

from the correlation coefficients between the first axis of

the MADIFA and the environmental variables (Fig.

3E). The positive scores on this axis correspond to areas

located at high elevations (correlation between elevation

and the first axis: R¼0.59), close to the screes (D.Screes,

R ¼ �0.67), and, above all, close to the meadows

dominated by Sesleria and Carex sempervirens (D.Se-

CarS, R ¼ �0.78). The negative scores correspond to

FIG. 3. Results of the MADIFA performed to analyze the chamois distribution with respect to the 17 environmental variables.
Despite the fact that only one axis is highlighted by the analysis, results are presented for the first two axes in panels (E) and (F).
For panels (B)–(D), levels of each environmental variable increase from light to dark gray. (A) Bar plot of the eigenvalues;
(B) environmental suitability map of the area computed using the first axis of the MADIFA; (C) environmental suitability map of
the area computed using the 17 environmental variables (full-rank Mahalanobis distances); (D) environmental suitability map of
the area computed using the last seven axes of the PCA of the niche (method of Rotenberry et al. [2002, 2006]); (E) graph of the
correlations between the environmental variables and the first (x-axis) and second (y-axis) axes of the MADIFA (see Table 1); and
(F) factorial map of the ecological niche of the chamois on the first (x-axis) and second (y-axis) axes of the MADIFA. The gray
points correspond to the available points (pixels of the maps), and their intensity of use is proportional to the area of the black
points. The whole set of black circles defines the niche of the species.
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areas with the opposite characteristics. The chamois

habitat is the narrowest on this dimension of the

ecological space, regarding the width of the distribution

of available points. The factorial map of the ecological

space indicates that the distribution of the available

environment is shifted to the negative values of the first

axis (whereas the used points are still centered on zero;

see Fig. 3F). Within the studied context, it seems that the

chamois select the areas close to the screes (50% of the

detections within 111 m of this environment type) and,

above all, close to meadows dominated by Sesleria and

Carex sempervirens (75% of the detection within 70 m of

this vegetation type).

The environmental suitability maps (ESMs) built

using the first axis confirmed these results (Fig. 3B).

The comparison of the ESMs with the maps of

environmental variables showed that the most suitable

areas are found close to meadows dominated by Sesleria

and Carex sempervirens, and close to screes (Fig. 2C).

The effect of the elevation here seems indirect: the most

suitable areas are found at high elevation, which

correspond to low distances to meadows dominated by

Sesleria and Carex sempervirens (this environment type

is on average located at an elevation of 1588 6 183 m

[mean 6 SD]) and to screes (which were, on average,

located at an elevation of 1748 6 163 m). The indirect

effect is consistent with the sharp aspect of the map that

indicates a clear frontier between suitable and unsuitable

environments, whereas the elevation map is more

continuous. Note that the main spatial structures of

the map of the full-rank Mahalanobis distances (Fig.

3C) are clearer on the ESMs built from the analysis (Fig.

3B): the increased precision (reduced generality) of the

full-rank Mahalanobis distances is manifest in the

identification of less area as potentially suitable (more

noise is included in this measure).

Female chamois give birth to young inMay and need a

lot of resources to feed them (Hamr 1985, Ferrari et al.

1988). The prolific regrowth of the vegetation results in

many energetic shoots in the meadows dominated by

Sesleria and Carex sempervirens, which may therefore

explain the abundance of the chamois in such environ-

ments at this time of the year. The distance to screes is also

well-correlated with the first axis of the MADIFA, but

this probably results from a confounding effect, as the

screes are close to such meadows. This proximity of the

screes probably increases the chamois preference for these

meadows, as the screes may provide both an escape in

case of predators (Bleich et al. 1997) and saline resource.

We then measured the goodness of fit with the

validation data set. Following, Knick and Dyer (1997),

we computed the cumulative frequency of the reduced-

rank Mahalanobis distances (Fig. 3B) for (i) the pixels of

the study area, (ii) the pixels containing chamois

detections of the calibration set, and (iii) the pixels

containing detections of the validation set (Fig. 4). We

used the curves of both the study area and the validation

set to derive a measure of the predictive capabilities of

the analysis. The area located above the curve of the

study area and below the curve of the validation set on
this graph measures the quality of the prediction.
Indeed, this area would be maximum in the case of a

perfect prediction, because the value of the cumulative
frequency of distances for the validation set would be

equal to one whatever the value of distance (indicating
that these distances are equal to zero for all the
detections of the validation set). Therefore, dividing

the quality of prediction of the validation set by the area
located above the curve of the study area and below the
line Y ¼ 1 (theoretical perfect prediction) on this graph

gives a standardized measure Q of quality of prediction.
We also computed this ratio for the calibration data set,
to give a measure G for the goodness of fit.

The goodness of fit of the MADIFA is rather high (G
¼ 74%; Fig. 4A). The curve of cumulative frequency
distribution for the validation set is similar to the curve

of the calibration set, indicating good predictive

FIG. 4. Cumulative frequency distribution of the reduced-
rank Mahalanobis distances computed for the pixels of the
study area in the Bauges mountains (French Alps, solid black
line), for the calibration data set (pixels where chamois groups
were detected from 1994 to 2000, dashed gray line), and for the
validation data set (pixels where chamois groups were detected
from 2001 to 2004, dashed black line). (A) Reduced-rank
Mahalanobis distances computed using the first axis of the
MADIFA; and (B) reduced-rank Mahalanobis distances
computed using the last seven axes of the PCA of the niche.
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capabilities (Q¼ 73%). Indeed, 94% of the detections of

these sets are in the top 75% of the reduced-rank

Mahalanobis distances of the pixels of the study area.

Finally, we compared the results of the MADIFA

with those of the PCA of the used points advocated by

Rotenberry et al. (2002, 2006). We computed an ESM

using the last seven axes of the PCA of the used points

(Fig. 3D). The goodness of fit was lower than for the

MADIFA (G ¼ 66%), and the predictive capabilities of

this ESM were even lower (Q ¼ 59%, Fig. 4B). In fact,

the main factor limiting the chamois distribution is

closely related to the elevation, which is the main pattern

on the study area. Therefore, this basic habitat

requirement is unlikely to define the last axes of the

PCA of the used points. Using the last axes of the PCA

to build an ESM is likely to keep only the ‘‘noisy part’’

of the Mahalanobis distances. This again stresses the

need to take into account the availability when one

wants to identify habitat requirements.

DISCUSSION

We developed Mahalanobis distance factor analysis

(MADIFA) to explore, analyze, and visualize the niche

in the ecological space. Furthermore, these results can be

used to derive environmental suitability maps (ESMs) to

visualize the patterns of the niche in the geographical

space. This method led us to identify the main

characteristics of the environment selected by the

chamois, and provided an ESM of the area. We pointed

out that the elevation is correlated to all the environ-

mental variables included in the analysis (e.g., screes,

meadows dominated by Sesleria and Carex sempervirens

are generally found at high elevation) and is also the

main structure of the chamois habitat: the variance of

the species habitat is maximal for the elevation.

However, although the chamois habitat is wider on this

dimension, it is narrow relative to the range of available

environment, indicating that this dimension contributes

to the definition of a basic habitat requirement for this

species (although indirectly, through its effect on the

vegetation). This example clearly illustrates the need to

take into account the availability in the partitioning of

the Mahalanobis distances.

Accounting for the environmental availability at the

time of sampling is also important for the ‘‘classical’’

Mahalanobis distances method. In most papers using

this method, the environmental suitability is estimated

on the area where the sample of used site has been

collected (e.g., Clark et al. 1993). However, the

environmental conditions may vary beyond the limits

of this area. If the limits of the area on which the

Mahalanobis distances are mapped are not carefully

checked, the environmental conditions on the mapped

area may not be representative of what was actually

available to the species at the time of sampling. In such a

case, the Mahalanobis distances may indicate an

unsuitable environment in areas where the environmen-

tal conditions vary in a biologically positive direction

(Knick and Rotenberry 1998). Consequently, even if the

Mahalanobis distances method is a powerful method for

ESM modeling, it does not circumvent the problem of

the definition of availability.

Hypotheses underlying the MADIFA

The main assumption underlying the MADIFA is

that the maximized statistic hj is relevant to capture the

PLATE 1. A chamois (Rupricapra rupricapra) photographed in the Bauges mountains (French Alps). Photo credit: Marc
Cornillon.
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patterns of the niche in its environment. Because this

statistic is a ratio between two sums of squared

deviations from the mean of the niche, this assumption

will be met if the mean of the niche is close to its mode

(i.e., unimodal and symmetric niche). This hypothesis is

also required by all factorial methods relying on the

concept of ecological niche (ter Braak 1985, 1986, Knick

and Rotenberry 1998, Hirzel et al. 2002). It ensures that

the sum of squared deviations from the mean of the

niche is a measure of the distance from the conditions

most frequently used by the species.

This sum of squared deviations is very sensitive to

outliers (Cleveland 1993), and so is the optimality

criterion hj. Although this criterion allows MADIFA

to be placed in a consistent theoretical framework

(including the ecological-niche factor analysis [ENFA]

and the Mahalanobis distances), further research needs

to be done on factor analyses relying on more robust

criteria, for example based on the median of absolute

deviations from the median of the niche (Cleveland

1993).

Finally, one of the main issues regarding the statistical

analysis of this type of data (therefore including

MADIFA) is that most of the time the sample is not

obtained using proper sampling designs that lead to

unbiased estimation (e.g., random sampling or system-

atic sampling). The data concerning the chamois in the

mountains of Les Bauges were obtained after a

complete, therefore unbiased, census of the population

in open areas, so that we did not meet this kind of

problem. However, such sources of bias should be

carefully checked in studies carried out at very large

scale, especially in biogeography, where proper sampling

is not possible (e.g., Spichiger et al. 2004).

Conclusions

The MADIFA is to be used jointly with other

exploratory methods to visualize the structures of the

niche. Classical PCAs can be used to identify correlates

between environmental variables both in the species

niche and on the study area. The MADIFA returns an

image of the ecological space, and also allows visuali-

zation of the niche patterns in the geographical space,

through the computation of an environmental suitability

map (ESM). The ENFA may, in addition, be used to

distinguish the parts of the Mahalanobis distances

caused by the specialization and the marginality of the

species. By matching all these results and the results of

simpler descriptive statistics (e.g., histograms), the

researcher can build a conceptual model of the

biological system under study. The understanding of

this system may be of major use for the estimation of

more complex predictive models.
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Paraguay-Paraná Basin. Journal of Biogeography 31:1489–
1501.

ter Braak, C. J. F. 1985. Correspondence analysis of incidence
and abundance data: properties in terms of a unimodal
response model. Biometrics 41:859–873.

ter Braak, C. J. F. 1986. Canonical correspondence analysis: a
new eigenvector technique for multivariate direct gradient
analysis. Ecology 67:1167–1179.

Thompson, L. M., F. T. van Manen, S. E. Schlarbaum, and M.
DePoy. 2006. A spatial modeling approach to identify
potential butternut restoration sites in Mammoth Cave
National Park. Restoration Ecology 14:298–296.

von Elsner-Schack, I. V. 1985. What is good chamois habitat?
Pages 71–76 in S. Lovari, editor. The biology and manage-
ment of mountain ungulates. Croom Helm, London, UK.

APPENDIX A

Mahalanobis distances (Ecological Archives E089-030-A1).

APPENDIX B

Demonstration: the sum of the squared scores of the pixels on the factorial axes of the MADIFA is equal to the Mahalanobis
distances (Ecological Archives E089-030-A2).

APPENDIX C

Results of the principal component analyses performed to identify the correlations on the study area, and in the chamois niche
(Ecological Archives E089-030-A3).
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Appendices 

Appendix A. Mahalanobis  

distances 

We illustrate below the basic rationale behind the use of the Mahalanobis distance as an 

environment suitability index, for two points P1 and P2, using only the information on the 

niche of a species. The ecological space is defined by HV1 and HV2. The grey circles 

correspond to the used resource units (area is proportional to their use). The space is centered 

on the centroid O of the niche. The proximity between the centroid of the niche and a given 

point is a measure of its quality, the centroid being the point where the probability of use by 

the species is the highest. The Euclidean distances P1-centroid is smaller than the distance P2-

centroid, but both points are likely to have the same suitability (they both are located on the 

border of the niche). The Mahalanobis distances take into account the shape of the niche in 

this computation (grey levels). Using this measure, P1 and P2 are located at the same 

Mahalanobis distance from the centroid of the niche (same level of grey).  

 



 



Appendix B. Demonstration: the sum of the squared scores of the 

pixels on the factorial axes of the MADIFA is equal to the 

Mahalanobis distances. 

 

For a given pixel i, the squared Mahalanobis distance is computed by the sum of the squared 

scores of the pixel on the successive axes of the MADIFA. Indeed, using Eqn 4 from the 

paper, we can show that the sum of the squared scores of a given pixel i on the P axes of the 

analysis is equal to: 

2 -1

1 1

P P
t t t

ik k i i k
k k

l • •
= =

=∑ ∑ v A Z Λ Z Av  

where lik is the score of the RU i on the kth axis of the MADIFA. Using the Eqn. 2, and noting 

that the vectors vk have a norm equal to one (because they are the eigenvectors of G), one can 

deduce that 

2 2 2
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P P
t

ik ik k k i
k k

l b D
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The sum of the squared scores of the pixels on the factorial axes of the MADIFA is therefore 

equal to the Mahalanobis distances. 



Appendix C. Results of the principal component analyses 

performed to identify the correlations on the study area, and in the 

chamois niche 

We present below the eigenvalues diagram (inserts) and the correlation circles of the two 

principal components analyses (See Table 1 of the main text for the definition of the 

variables). (A) Correlation circle of the first two axes of the principal component analysis of 

the table describing the value of the 17 environmental variables (columns) in each pixel of the 

map of the area (rows). (B) Correlation circle of the first two axes of the principal component 

analysis restricted to the pixels used by the chamois. 

 

 


