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Abstract. The Mahalanobis distances have been introduced in habitat selection studies for
the estimation of environmental suitability maps (ESMs). The pixels of raster maps of a given
area correspond to points in the multidimensional space defined by the mapped environmental
variables (ecological space). The Mahalanobis distances measure the distances in this space
between these points and the mean of the ecological niche (i.e., the hypothesized optimum for
the species) regarding the structure of the niche. The map of these distances over the area of
interest is an estimated ESM. Several authors recently noted that the use of a single optimum
for the niche of a species may lead to biased predictions of animal occurrence. They proposed
to use instead a minimum set of basic habitat requirements, found by partitioning the
Mahalanobis distances into a restricted set of biologically meaningful axes. However, the
statistical approach they proposed does not take into account the environmental conditions on
the area where the niche was sampled (i.e., the environmental availability), and we show that
including this availability is necessary. We used their approach as a basis to develop a new
exploratory tool, the Mahalanobis distance factor analysis (MADIFA), which performs an
additive partitioning of the Mahalanobis distances taking into account this availability. The
basic habitat requirements of a species can be derived from the axes of the MADIFA. This
method can also be used to compute ESMs using only this small number of basic
requirements, therefore including only the biologically relevant information. We also prove
that the MADIFA is complementary to the commonly used ecological-niche factor analysis
(ENFA). We used the MADIFA method to analyze the niche of the chamois Rupicapra
rupicapra in a mountainous area. This method adds to the existing set of tools for the

description of the niche.
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INTRODUCTION

The detailed knowledge of species distribution is of
major concern for a large range of ecological topics.
Among the tools available to improve this knowledge,
environmental suitability maps (ESMs) occupy the first
place (Guisan and Zimmermann 2000, Manly et al.
2002, Elith et al. 2006). Such maps are essential for
decision making in wildlife management (Knick and
Rotenberry 1998) and for building conservation plans
(Araujo and Williams 2000).

Most methods developed to build ESMs rely on the
concept of ecological niche (Guisan and Zimmermann
2000). These maps are generally estimated using a
sample of species occurrences on an area mapped for
several environmental variables (e.g., elevation, slope,
vegetation). Each environmental variable defines a
dimension of a multidimensional space, hereafter termed
“ecological space.” The values of these variables can be
determined for each species occurrence, so that the

Manuscript received 19 October 2006; revised 6 June 2007;
accepted 22 June 2007. Corresponding Editor: N. G. Yoccoz
3 E-mail: calenge@biomserv.univ-lyonl.fr

555

whole set of occurrences defines a cloud of points in the
ecological space, the species niche. Environmental
suitability mapping implies the computation of one
environmental suitability index for each pixel of the
map, based on the position of the corresponding point in
the ecological space relative to the species niche. These
indices are then mapped in the geographical space to
provide an ESM.

The commonly used Mahalanobis distance between
the available point and the mean of the niche is such an
index (Mahalanobis 1948, Clark et al. 1993, Knick and
Dyer 1997, Knick and Rotenberry 1998, Corsi et al.
1999, Farber and Kadmon 2003, Cayuela 2004, Thomp-
son et al. 2006). The mean of the niche is supposed to
reflect the environmental conditions optimal for the
studied species. The Mahalanobis distance for a given
point expresses the distance between this point and the
species optimum in the ecological space, regarding the
niche structure (see Appendix A for a precise graphical
description of these distances). If we assume that smaller
distances correspond to areas that are more likely to be
occupied by the species, the Mahalanobis distances can
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be mapped over the study area to provide a reliable
ESM.

Recently, several authors noted that the mean of the
niche of a species on a given study area can be a poor
proxy for its optimum (Dunn and Duncan 2000,
Rotenberry et al. 2002, 2006, Browning et al. 2005).
More suitable characteristics of the environment found
in another area, but not in the original one, will be
characterized by large Mahalanobis distances, and
therefore low estimated suitability. The Mahalanobis
distances may therefore lead to biased predictions of
animal occurrence under different environmental con-
ditions. These authors proposed to use, instead of this
optimum, a minimum set of basic habitat requirements.
They advocated that the variables that maintain a
consistent value where the species occur (i.e., the
variables with a low “used” variance) are those most
likely to be associated with basic habitat requirements.
For this reason, they argued that the last axes of a
principal component analysis (PCA) of the niche, on
which the variance is the smallest, can be used to define
this basic set. Moreover, they demonstrated that this
PCA is a natural way to partition the Mahalanobis
distances. Therefore, these authors recommended esti-
mating ESMs by computing a reduced-rank Mahalano-
bis distance for each pixel of the map of the study area,
by considering only this restricted set of principal
components. They consider this statistic as the distance
from the pixel to this minimum set of basic require-
ments.

However, although this linear partitioning of the
Mahalanobis distance relies on both solid mathematical
bases and sound biological issues, it is also problematic.
The PCA recommended by these authors is performed
on the table giving the value of the environmental
variables (columns) in the sites used by the species
(rows), without consideration of the availability of the
environmental variables. Note that this table is stan-
dardized before the PCA is applied, so that all the
environmental variables have a unit variance. This
preliminary operation is necessary, as the variables
may not be measured on the same scale (e.g., the
elevation measured in meters and slope measured in
percent). However, this scaling has an unexpected
consequence: maximizing the variance of the standard-
ized niche on the first axes of the PCA is just a way of
maximizing the sum of the squared correlations between
the environmental variables and the first axis (Legendre
and Legendre 1998).

However, the fact that some environmental variables
are strongly correlated among each other does not imply
that these variables cannot be used to define a basic set
of required habitats. For example, hydrobiologists often
measure the velocity, the depth, and the flow of a stream
when they want to study the niche of a fish species (e.g.,
Miki-Petdys et al. 1997). These variables are often
strongly correlated among each other, even when the
correlations are computed only with the sites used by the
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species. These variables are therefore likely to define the
first axis of the PCA of the niche. However, they are
strong limiting factors for many species, in the sense that
the range of variation actually experienced by the species
is very small relative to the range that could be
potentially encountered by the species.

The crucial point here is that the identification of
variables with a “low” variance implies that we know
what a “normal” variance is for these variables: a
reference value is needed. Actually, the used sites are
generally sampled on a given area, which defines the
context in which the niche takes place. The whole set of
pixels of this area defines a cloud of “available points” in
the ecological space, of which the niche is a subset. The
shape of the niche in the ecological space is partly the
result of the influence of this context. Actually, we
defend the idea that the identification of the required
habitat for a species distribution from a sample of used
sites should also take into account the environmental
availability at the time of sampling in some way.

However, the biological issue raised by Rotenberry et
al. (2002, 2006) is important. The definition of a
restricted set of basic habitat requirements could
improve the predictive capabilities of ESMs based on
the Mahalanobis distances. In this paper, we used the
work of Rotenberry et al. (2002, 2006) as a basis to solve
the problem of the identification of the basic habitat
requirements. We therefore developed a new exploratory
approach to tackle the problem, which we called the
“Mahalanobis Distances Factor Analysis” (MADIFA).
This approach also performs an additive partitioning of
the Mahalanobis distances, but the first components of
the analysis now explain most of the Mahalanobis
distances for the set of available points on a given area.
The factorial maps of these axes allow both the
exploration of the niche in the ecological space and the
identification of the environmental variables corre-
sponding to basic habitat requirements. The factorial
axes can also be used to compute ESMs on a lower
number of dimensions (and therefore with increased
generality) that take into account a large part of the
niche restriction. We illustrate how this analysis may
find its place among other exploratory tools of the niche
with the analysis of the niche of the chamois (Rupicapra
rupicapra) in a mountainous environment.

THE COMPUTATION OF THE MAHALANOBIS DISTANCES

We assume that the values of P environmental
variables are known for N pixels (where N can be a
random sample or the whole set of pixels of a map). We
consider here that the N available pixels have the same
weight in the analysis, contained in the N X N (rows X
columns) diagonal matrix D= Diag(1/N). Moreover, we
consider a set of N utilization weights, summing to one,
which reflects the use of the N pixels by the focus species.
For example, these weights may correspond to the
proportion of locations of the studied species in the
pixels of the map. These weights are stored in an N X N
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diagonal matrix D,. In the rest of this paper, we will
term “available pixels” the whole set of N pixels of the
analysis, and “used pixels” or “niche” the set of pixels
for which the utilization weights are greater than zero.

Let the matrix Z contain the value of the P
environmental variables (columns) in each one of the
N available pixels (rows). The matrix Z is centered and
scaled for the weighting D,, (i.e., respectively, the origin
of the space defined by the columns of Z is located at the
mean and the variance is 1 for all columns of Z). Finally,
letz=2" D, Z be the correlation matrix as the columns
of Z have a unit variance (where Z" is Tthe transpose of
7).

The squared Mahalanobis distance D? between any
available point i (associated to a pixel in the geograph-
ical space) and the mean of the niche provides an index
of the environmental suitability at this place. Let Z; be
the row vector containing the values of the P environ-
mental variables for the ith pixel (that is, the ith row of
the matrix Z). In these conditions, the squared
Mahalanobis distance between the point i and the mean
of the niche can be computed with

D} =7, 27'Z]. (1)

LINEAR PARTITIONING OF THE MAHALANOBIS DISTANCES:
THE PoINT OF VIEW OF ROTENBERRY ET AL. (2002, 2006)

Rotenberry et al. (2002, 2006) noted that the
computation of these distances relies on the computa-
tion of the inverse of the matrix X (Eq. 1). This
computation may be performed by its diagonalization
(i.e., the computation of its eigenvectors and eigenval-
ues). More formally,

T = AAAT

where the matrix A is the diagonal matrix containing the
P eigenvalues A; of the matrix X, i.e., Diag(A;, Ao, ...,
A,), and A is the matrix containing the P eigenvectors o
of the matrix X concatenated by columns, i.e., [o1, o,
.., op]. The inverse of the matrix X is given by the
following (Harville 1997):

T =AATIAT.

Consequently, the Mahalanobis distance between the
point i and the mean of the niche can be computed using

D} =Z,AN 'A"Z]. (2)

Rotenberry et al. (2002, 2006) noted that this formula
provides a natural way of partitioning the Mahalanobis
distances, as it is related to the principal components
analysis (PCA) of the niche (i.e., a PCA of the table Z
using the matrix D, as row weights; as in Fig. 1B). The
axes of this PCA correspond to the eigenvectors of X
(i.e., oy, oy, etc.). The first axes represent the directions
in the ecological space for which the niche width is
maximal. The variance of the niche projected onto a
given axis j of this PCA is the corresponding eigenvalue
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;. Note that because Z has been scaled, this maximized
variance is just the sum of squared correlations between
the environmental variables and the axis j of the PCA
(Legendre and Legendre 1998). The vector Z,. contains
the coordinates of the available point 7 in the ecological
space. Therefore the coordinate of the available point i
projected onto the jth axis of the PCA is computed by
Z,0,. The normed coordinate b;; of the point i on the jth
factorial axis corresponds to the raw coordinate divided
by the standard deviation of the niche on this axis. Then,
using Eq. 2, it is straightforward to show that the
Mahalanobis distances can be computed by the sum of
the squared b

S (Z) 3)
I = ! = Vi

Rotenberry et al. (2002, 2006) advocated the use of a
limited set of PCA axes to compute reduced-rank
Mahalanobis distances. They noted that the first axes
of the PCA are unlikely to describe required habitats,
precisely because they thought that the large variance on
these axes indicated that the ecological variation
experienced by the species was large (whereas this
variance is just the sum of squared correlation with the
environmental variables). They proposed instead to
compute the reduced-rank Mahalanobis distances using
the last eigenvectors of the PCA, arguing that the
dimensions on which the niche is the narrowest are likely
to describe required habitats. For example, using the last
R axes of the PCA, the reduced-rank squared Mahala-
nobis distances Dl-z is computed using

D=3 b

j=P—-R

SoME REFINEMENTS OF THIS POINT OF VIEW:
Tue MADIFA

The three steps to perform the MADIFA

We develop here a new partitioning of the Mahala-
nobis distances, which identifies the directions in the
ecological space for which the niche is the narrowest in
comparison to the width of the cloud of available points
(see Fig. 1). We call it the “Mahalanobis Distances
Factor Analysis” (MADIFA). This analysis is per-
formed in three steps. The first two steps of this analysis
are exactly the approach proposed by Rotenberry et al.
(2002, 2006).

A PCA is first performed on the table Z using the
matrix D, as row weights, which returns the directions
partitioning the variance of the standardized niche into
orthogonal components (Fig. 1B), i.e., the set of
eigenvectors a; and of eigenvalues A; (=1, ..., P) of
the matrix X as defined in Eq. 2. Second, the ecological
space is distorted: the correlation structure is removed
by rescaling the variance of all axes to one (Fig. 1C). The
scores of the available pixels in this distorted space are
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Fic. 1.

The MADIFA procedure (see The three steps to perform the MADIFA). The black dots are points considered as

available to the species. To each available point is associated one utilization weight proportional to its use by the species (indicated
by a gray circle with an area proportional to this weight). The values of the Mahalanobis distance to the optimum of the niche are
indicated by gray levels (i.e., the darker the shade, the farther from optimum). (A) The ecological space is defined by two
environmental variables, HV1 and HV2, and is centered on the mean of the niche. (B) The first principal component analysis (PCA)
of the niche (PC1 and PC2 are the principal components). (C) The scores of the points on the two principal components are divided
by the square root of their respective eigenvalues. (D) The second PCA (not centered) maximizes the mean-squared Mahalanobis
distances between the available points and the mean of the niche on the first axes, MAD1 and MAD2.

stored in the N X P matrix B:
B = ZAA™'/2, (4)

The matrix B contains the normed scores b;; as defined in
Eq. 3 (Rotenberry et al. 2002, 2006).

Thereafter, we add another step to this approach: we
perform a PCA on matrix B using the uniform row
weights stored in D. This second PCA is the core of the
MADIFA, and we show hereafter that it returns linear
combinations of the environmental variables so that the
width of the niche is the smallest in comparison to the
width of the cloud of available points (Fig. 1D).

Mathematical properties of the second PCA

The matrix being diagonalized is G = B" D B. This
analysis returns a set of P orthogonal eigenvectors v,

stored in a matrix V, and P corresponding eigenvalues 0
stored on the diagonal of the matrix ®, so that G =
VOVT. The pixel scores are computed by L = BV:

L = ZAA'?V. (5)

This formula summarizes the three steps of the
MADIFA (Fig. 1): the factorial axes of this analysis
are found after a rotation (matrix A), a distortion
(matrix A™?), and another rotation (matrix V) of the
cloud of available points in the ecological space (matrix
Z). All these transformations of Z can be summarized in
a matrix C = AA™"?V. The pixels scores are the linear
combinations of the environmental variables (i.e., L =
7C).

The value maximized on the first axes of the
MADIFA is equal to the following:
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where /j; is the score of the pixel i/ on the jth axis of the
MADIFA, [ ; 1s the mean of the scores of the used pixels
on the jth axis of the analysis, and u; is the utilization
weight associated with the pixel i. This result derives
from the observation that the used variance (denomi-
nator of 0)) is equal to 1 on the axes of the MADIFA,
and that 7} = 0 (as the origin of the ecological space is
the mean of the niche).

Thus, the denominator of 0; is the variance of the
niche on the first axis of the MADIFA However, the
numerator is not a variance: it is the mean of the squared
deviations of the available points from the mean of the
scores of used points. Consequently, the MADIFA
indicates the directions where the niche is the narrowest
(low variance) compared to the width of the distribution
of available points. This direction is likely to define a
basic habitat requirement.

We show in Appendix B that

= zpjzfj. (7)

Note that this result implies that the sum of the
eigenvalues 0; over all the axes j of the analysis is equal
to the mean of the squared Mahalanobis distances for
the available pixels. It is therefore possible to compute
the proportion of the mean-squared Mahalanobis
distances explained by each axis.

Now, like Rotenberry et al. (2002, 2006), we can
compute reduced-rank squared Mahalanobis distances
with the set of R first axes (chosen so that the variance of
the niche is the smallest as compared to the variance of
the available points), reflecting the distance between the
available points and the set of basic habitat require-
ments. From Eq. 7, one can derive the reduced-rank
squared Mahalanobis distance:

R
b =P 8)
J=1

The scores of the pixels on the axes of the MADIFA can
be used to draw factorial maps to identify the structures
of the niche in the ecological space (as in Fig. 1D).
Alternatively these scores can be used to map reduced-
rank Mahalanobis distances over the area, to provide
clearer and sharpened environmental suitability maps
(ESMs; using Eq. 8). The biological meaning of the
factorial axes can be found either by using the
coefficients in C or the correlations with the original
environmental variables.

The MADIFA is programmed in the function
“madifa()” of the free package adehabitat (Calenge
2006) for the R software (R Development Core Team
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2005). It can be used as a classical exploratory tool
(Legendre and Legendre 1998) to draw a conceptual
model of the studied biological system.

The MADIFA and the ecological-niche factor analysis

The MADIFA is closely related to the ecological-
niche factor analysis (ENFA) developed by Hirzel et al.
(2002). Indeed, these authors noted that basic habitat
requirements are likely to be associated with the
directions of the ecological space where the variance of
the niche is very small in comparison to the variance of
the available points. The ratio of these two variances
computed for a given variable is an index of the
specialization of the species on this variable. The ENFA
is a factor analysis of the niche maximizing this index on
the first axis. More formally, for a given axis j, the
specialization ratio S is equal to

N 1 o
> vy —wi)
S(w)) = ©)

N
g U; w,,—w

i=1

=

where wj; is the score of the ith pixel on the jth axis of the
ENFA, w{ is the mean of the scores of available points
on the jth axis of the ENFA, and w! is the mean of the
scores of the used points on the same axis. Note that
S(w)) is very similar to 6, (compare Eq. 6 and Eq. 9). The
only difference is that the former uses the variance of
available points as a measure of the width of the
distribution of available points, while the latter uses the
mean of the squared deviation of available points from
the mean of the scores of used points.

Maximizing the ratio S(w;) is possible only if the
marginality vector has first been extracted from the data
(i.e., the vector connecting the mean of the cloud of
available points to the mean of the cloud of used points;
Hirzel et al. 2002). However, the marginality vector is
often biologically important, and several authors
stressed the need to take into account this vector in
the interpretation of the results (e.g., Hirzel et al. 2002).
Consequently, the available and used points are
projected onto this vector to define a marginality axis
as a first step. The interpretation of the results of the
ENFA includes the interpretation of the scores of used
and available points on this marginality axis.

Note that the ratio 6, maximized by the axes of the
MADIFA can be rewritten:

0 =— +Sw)

where mj2 is the squared difference between the mean of
the scores of used points and the mean of the scores of
available points on the jth axis of the analysis (i.e., the
marginality), and vf is the variance of the niche on the
The MADIFA therefore
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TaBLE 1. Variables included in the “Mahalanobis Distances
Factor Analysis” (MADIFA).

Abbreviation Variable name

Elev elevation

D.Alder distance to alder woods

D.Screes distance to screes

D.Forest distance to forested areas

D.Fodder distance to fodders

D.Brachy distance to meadows dominated by
Brachipodium

D.CarexF distance to meadows dominated by
Carex ferruginea

D.TallHe distance to meadows dominated by
tall herbs

D.Nardus distance to meadows dominated by
Nardus ssp.

D.SeCarS distance to meadows dominated by
Sesleria and Carex sempervirens

D.Rhodo distance to moors dominated by
Rhododendron

D.Trail distance to recreational trails

Hydro hydrography

Slope slope

Sunshine sunshine

Visib visibility (area seen from each pixel,
computed using Elev)

Visib1000 visibility computed within a radius

of 1000 m

combines the marginality and the specialization into one
single measure of niche restriction.

Thus, the ENFA may be used to complement the
results of the MADIFA as it allows identification of the
part of the Mahalanobis distances corresponding to the
specialization and to the marginality, respectively. Used
jointly, these two approaches lead to a more precise
conceptual model elaborated for the niche of the focus
species. The ENFA can also be used to draw factorial
maps of the niche (Basille et al. 2008).

On the other hand, as the marginality axis does not
have the same mathematical status as the specialization
axes of the ENFA (the marginality axis is orthogonal to
the specialization axes, but the specialization axes are
not orthogonal among each other; Hirzel et al. 2002), it
is often difficult to combine all these axes into one single
index of environmental suitability. So far, existing
methods trying to combine the marginality and special-
ization axes use ad hoc algorithms (Hirzel et al. 2002,
Hirzel and Arlettaz 2003). Although these ENFA-based
methods have proven to return biologically consistent
environmental suitability maps (ESMs; e.g., Bryan and
Metaxas 2007), the MADIFA is probably a better way
to build environmental suitability maps: it returns axes,
all with the same mathematical status, which can be
combined into ESMs in a consistent manner.

APPLICATION: EXPLORATION OF HABITAT
SELECTION BY THE CHAMOIS

We explored the habitat component of the niche of
the chamois (Rupicapra rupicapra; see Plate 1) in open
areas of the wildlife reserve of Les Bauges (French Alps,
45°25" N, 6°5" E; Fig. 2A). The data were collected
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during censuses carried out every year from 1994 to 2004
in June using the same protocol (flash counts; see e.g.,
Houssin et al. 1994). Volunteers and professionals
working in various French wildlife and forest manage-
ment organizations walked along 24 transects and
looked around two fixed points, which were distributed
over the reserve so that all open areas (i.e., nonforested
areas) were visible to the observers. All transects were
traveled simultaneously at dawn by teams of two
observers, and each detected chamois group was located
on a map of the reserve (precision of ~10 m). At the end
of the census, hours and locations of observations were
compared in order to delete the double counts. Because
the study of habitat selection requires a homogeneous
sampling effort, we used the upper elevation limit of the
forests to delimit our study area (6430 ha dominated by
open meadows located at an elevation >1200 m).
Preliminary analysis showed that the number and the
spatial distribution of the detected groups did not vary
greatly among years (C. Calenge and G. Darmon,
unpublished data). We therefore considered the pooled
data set here to reduce these sampling fluctuations.
During the seven years of the study, 650 chamois groups
were detected (Fig. 2B). We split the data set in two, one
for calibration (from 1994 to 2000; 400 groups detected),
and one for validation (from 2001 to 2004; 250 groups
detected). Seventeen environmental variables were in-
cluded in the analysis of the chamois habitat (Table 1,
Fig. 2C). These variables were supposed to reflect the
chamois distribution, either because they reflect the
location of secure areas (e.g., distance to trails, visibility,
slope; von Elsner-Schack 1985), or because they
represent vegetal associations in which the chamois
may search for food (Ferrari et al. 1988, Garcia-
Gonzalez and Cuartas 1996). Note that although we
focused only on the chamois distribution in the open
areas, we also included in the analysis the distance to
forested areas, because these surrounding habitats may
also influence the habitat use by the chamois in open
areas (Hamr 1985).

We first investigated habitat selection using the
calibration data set. Before the application of the
MADIFA, we explored the structure of the environ-
mental composition over the study area, using a
principal component analysis of the table giving the
values of the environmental variables (columns) in the
pixels of the maps of the area (rows). One main pattern
is highlighted (see Appendix C): the elevation, which is
the variable best correlated with the first axis, affects the
value of several environmental variables. Such an
altitudinal structure was expected in this mountainous
area. Areas close to the screes, to the meadows
dominated by Sesleria and Carex sempervirens, and to
the meadows dominated by Carex ferruginea are
generally found at high elevations (Rameau et al. 2001).

We also performed a PCA restricted to the pixels
where chamois were located (i.e., on its habitat). The
altitudinal structure highlighted on the study area was
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(A) Location of the wildlife reserve of Les Bauges in France; (B) distribution of the chamois detected on the area from

1994 to 2000; and (C) maps of the 17 environmental variables over the area, where levels of each environmental variable increase
from light to dark gray (see Table 1 for the full names of the variables).

also the main structure of the chamois habitat (Appen-
dix C). The correlation between the first axis of the PCA
of the available points and the first axis of the PCA of
the habitat is very strong (R = —0.87). Actually, the
altitudinal structure is so strong in the study area that it
also affects the shape of the cloud of used points in the
ecological space. However, the fact that the variance of
used pixels is maximal on this direction does not imply
that it does not describe a habitat required by the
chamois, as shown next.

We then studied habitat selection of the chamois with
the MADIFA. We first performed a preliminary Monte
Carlo test to determine whether the habitat selection is
significant in at least one direction of the ecological
space. At each step of the process, we simulated a
random habitat use by the chamois by generating a

uniform distribution of 400 points over the study area,
and we computed the first eigenvalue of the MADIFA
of this simulated data set. We repeated this simulation
500 times to derive a distribution of eigenvalues under
the hypothesis of random habitat use. We finally
compared the first eigenvalue of the MADIFA of the
observed 400 chamois groups to this simulated distri-
bution to derive a P value. There is actually a highly
significant habitat selection value (8; = 3.7, P < 0.002).

The proportion of the mean of the squared Mahala-
nobis distances explained by each axis j is measured by
the corresponding eigenvalue 0, The exploration of
these eigenvalues helps in choosing a number of axes to
interpret (Fig. 3A). The MADIFA returned one main
eigenvalue (15% of the mean of the squared Mahalano-
bis distances are explained on the first axis). The
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FiG. 3. Results of the MADIFA performed to analyze the chamois distribution with respect to the 17 environmental variables.

Despite the fact that only one axis is highlighted by the analysis, results are presented for the first two axes in panels (E) and (F).
For panels (B)~(D), levels of each environmental variable increase from light to dark gray. (A) Bar plot of the eigenvalues;
(B) environmental suitability map of the area computed using the first axis of the MADIFA; (C) environmental suitability map of
the area computed using the 17 environmental variables (full-rank Mahalanobis distances); (D) environmental suitability map of
the area computed using the last seven axes of the PCA of the niche (method of Rotenberry et al. [2002, 2006]); (E) graph of the
correlations between the environmental variables and the first (x-axis) and second (y-axis) axes of the MADIFA (see Table 1); and
(F) factorial map of the ecological niche of the chamois on the first (x-axis) and second ( y-axis) axes of the MADIFA. The gray
points correspond to the available points (pixels of the maps), and their intensity of use is proportional to the area of the black
points. The whole set of black circles defines the niche of the species.

percentage of the mean of the squared Mahalanobis
distances explained by the following axes is much lower
(10.5%, 9.5%, and 7.6% for the second, third, and fourth
axis, respectively). We therefore focused our interpreta-
tion on the first axis of the MADIFA.

The biological meaning of this axis can be deduced
from the correlation coefficients between the first axis of

the MADIFA and the environmental variables (Fig.
3E). The positive scores on this axis correspond to areas
located at high elevations (correlation between elevation
and the first axis: R=0.59), close to the screes (D.Screes,
R = —0.67), and, above all, close to the meadows
dominated by Sesleria and Carex sempervirens (D.Se-
CarS, R = —0.78). The negative scores correspond to
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areas with the opposite characteristics. The chamois
habitat is the narrowest on this dimension of the
ecological space, regarding the width of the distribution
of available points. The factorial map of the ecological
space indicates that the distribution of the available
environment is shifted to the negative values of the first
axis (whereas the used points are still centered on zero;
see Fig. 3F). Within the studied context, it seems that the
chamois select the areas close to the screes (50% of the
detections within 111 m of this environment type) and,
above all, close to meadows dominated by Sesleria and
Carex sempervirens (75% of the detection within 70 m of
this vegetation type).

The environmental suitability maps (ESMs) built
using the first axis confirmed these results (Fig. 3B).
The comparison of the ESMs with the maps of
environmental variables showed that the most suitable
areas are found close to meadows dominated by Sesleria
and Carex sempervirens, and close to screes (Fig. 2C).
The effect of the elevation here seems indirect: the most
suitable areas are found at high elevation, which
correspond to low distances to meadows dominated by
Sesleria and Carex sempervirens (this environment type
is on average located at an elevation of 1588 = 183 m
[mean = SDJ) and to screes (which were, on average,
located at an elevation of 1748 = 163 m). The indirect
effect is consistent with the sharp aspect of the map that
indicates a clear frontier between suitable and unsuitable
environments, whereas the elevation map is more
continuous. Note that the main spatial structures of
the map of the full-rank Mahalanobis distances (Fig.
3C) are clearer on the ESMs built from the analysis (Fig.
3B): the increased precision (reduced generality) of the
full-rank Mahalanobis distances is manifest in the
identification of less area as potentially suitable (more
noise is included in this measure).

Female chamois give birth to young in May and need a
lot of resources to feed them (Hamr 1985, Ferrari et al.
1988). The prolific regrowth of the vegetation results in
many energetic shoots in the meadows dominated by
Sesleria and Carex sempervirens, which may therefore
explain the abundance of the chamois in such environ-
ments at this time of the year. The distance to screes is also
well-correlated with the first axis of the MADIFA, but
this probably results from a confounding effect, as the
screes are close to such meadows. This proximity of the
screes probably increases the chamois preference for these
meadows, as the screes may provide both an escape in
case of predators (Bleich et al. 1997) and saline resource.

We then measured the goodness of fit with the
validation data set. Following, Knick and Dyer (1997),
we computed the cumulative frequency of the reduced-
rank Mahalanobis distances (Fig. 3B) for (i) the pixels of
the study area, (ii) the pixels containing chamois
detections of the calibration set, and (iii) the pixels
containing detections of the validation set (Fig. 4). We
used the curves of both the study area and the validation
set to derive a measure of the predictive capabilities of
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Fic. 4. Cumulative frequency distribution of the reduced-
rank Mahalanobis distances computed for the pixels of the
study area in the Bauges mountains (French Alps, solid black
line), for the calibration data set (pixels where chamois groups
were detected from 1994 to 2000, dashed gray line), and for the
validation data set (pixels where chamois groups were detected
from 2001 to 2004, dashed black line). (A) Reduced-rank
Mahalanobis distances computed using the first axis of the
MADIFA; and (B) reduced-rank Mahalanobis distances
computed using the last seven axes of the PCA of the niche.

the analysis. The area located above the curve of the
study area and below the curve of the validation set on
this graph measures the quality of the prediction.
Indeed, this area would be maximum in the case of a
perfect prediction, because the value of the cumulative
frequency of distances for the validation set would be
equal to one whatever the value of distance (indicating
that these distances are equal to zero for all the
detections of the validation set). Therefore, dividing
the quality of prediction of the validation set by the area
located above the curve of the study area and below the
line Y =1 (theoretical perfect prediction) on this graph
gives a standardized measure Q of quality of prediction.
We also computed this ratio for the calibration data set,
to give a measure G for the goodness of fit.

The goodness of fit of the MADIFA is rather high (G
= 74%; Fig. 4A). The curve of cumulative frequency
distribution for the validation set is similar to the curve
of the calibration set, indicating good predictive
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capabilities (Q = 73%). Indeed, 94% of the detections of
these sets are in the top 75% of the reduced-rank
Mahalanobis distances of the pixels of the study area.

Finally, we compared the results of the MADIFA
with those of the PCA of the used points advocated by
Rotenberry et al. (2002, 2006). We computed an ESM
using the last seven axes of the PCA of the used points
(Fig. 3D). The goodness of fit was lower than for the
MADIFA (G = 66%), and the predictive capabilities of
this ESM were even lower (Q = 59%, Fig. 4B). In fact,
the main factor limiting the chamois distribution is
closely related to the elevation, which is the main pattern
on the study area. Therefore, this basic habitat
requirement is unlikely to define the last axes of the
PCA of the used points. Using the last axes of the PCA
to build an ESM is likely to keep only the “noisy part”
of the Mahalanobis distances. This again stresses the
need to take into account the availability when one
wants to identify habitat requirements.

DiscussioN

We developed Mahalanobis distance factor analysis
(MADIFA) to explore, analyze, and visualize the niche
in the ecological space. Furthermore, these results can be
used to derive environmental suitability maps (ESMs) to
visualize the patterns of the niche in the geographical
space. This method led us to identify the main
characteristics of the environment selected by the
chamois, and provided an ESM of the area. We pointed
out that the elevation is correlated to all the environ-
mental variables included in the analysis (e.g., screes,
meadows dominated by Sesleria and Carex sempervirens
are generally found at high elevation) and is also the

A chamois (Rupricapra rupricapra) photographed in the Bauges mountains (French Alps). Photo credit: Marc

main structure of the chamois habitat: the variance of
the species habitat is maximal for the elevation.
However, although the chamois habitat is wider on this
dimension, it is narrow relative to the range of available
environment, indicating that this dimension contributes
to the definition of a basic habitat requirement for this
species (although indirectly, through its effect on the
vegetation). This example clearly illustrates the need to
take into account the availability in the partitioning of
the Mahalanobis distances.

Accounting for the environmental availability at the
time of sampling is also important for the “classical”
Mabhalanobis distances method. In most papers using
this method, the environmental suitability is estimated
on the area where the sample of used site has been
collected (e.g., Clark et al. 1993). However, the
environmental conditions may vary beyond the limits
of this area. If the limits of the area on which the
Mabhalanobis distances are mapped are not carefully
checked, the environmental conditions on the mapped
area may not be representative of what was actually
available to the species at the time of sampling. In such a
case, the Mahalanobis distances may indicate an
unsuitable environment in areas where the environmen-
tal conditions vary in a biologically positive direction
(Knick and Rotenberry 1998). Consequently, even if the
Mahalanobis distances method is a powerful method for
ESM modeling, it does not circumvent the problem of
the definition of availability.

Hypotheses underlying the MADIFA

The main assumption underlying the MADIFA is
that the maximized statistic 0; is relevant to capture the
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patterns of the niche in its environment. Because this
statistic is a ratio between two sums of squared
deviations from the mean of the niche, this assumption
will be met if the mean of the niche is close to its mode
(i.e., unimodal and symmetric niche). This hypothesis is
also required by all factorial methods relying on the
concept of ecological niche (ter Braak 1985, 1986, Knick
and Rotenberry 1998, Hirzel et al. 2002). It ensures that
the sum of squared deviations from the mean of the
niche is a measure of the distance from the conditions
most frequently used by the species.

This sum of squared deviations is very sensitive to
outliers (Cleveland 1993), and so is the optimality
criterion 0;. Although this criterion allows MADIFA
to be placed in a consistent theoretical framework
(including the ecological-niche factor analysis [ENFA]
and the Mahalanobis distances), further research needs
to be done on factor analyses relying on more robust
criteria, for example based on the median of absolute
deviations from the median of the niche (Cleveland
1993).

Finally, one of the main issues regarding the statistical
analysis of this type of data (therefore including
MADIFA) is that most of the time the sample is not
obtained using proper sampling designs that lead to
unbiased estimation (e.g., random sampling or system-
atic sampling). The data concerning the chamois in the
mountains of Les Bauges were obtained after a
complete, therefore unbiased, census of the population
in open areas, so that we did not meet this kind of
problem. However, such sources of bias should be
carefully checked in studies carried out at very large
scale, especially in biogeography, where proper sampling
is not possible (e.g., Spichiger et al. 2004).

Conclusions

The MADIFA is to be used jointly with other
exploratory methods to visualize the structures of the
niche. Classical PCAs can be used to identify correlates
between environmental variables both in the species
niche and on the study area. The MADIFA returns an
image of the ecological space, and also allows visuali-
zation of the niche patterns in the geographical space,
through the computation of an environmental suitability
map (ESM). The ENFA may, in addition, be used to
distinguish the parts of the Mahalanobis distances
caused by the specialization and the marginality of the
species. By matching all these results and the results of
simpler descriptive statistics (e.g., histograms), the
researcher can build a conceptual model of the
biological system under study. The understanding of
this system may be of major use for the estimation of
more complex predictive models.
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APPENDIX A

Mabhalanobis distances (Ecological Archives E089-030-A1).

APPENDIX B
Demonstration: the sum of the squared scores of the pixels on the factorial axes of the MADIFA is equal to the Mahalanobis

distances (Ecological Archives E089-030-A2).

APPENDIX C
Results of the principal component analyses performed to identify the correlations on the study area, and in the chamois niche

(Ecological Archives E089-030-A3).



Appendices

Appendix A. Mahalanobis

distances

Weillustrate below the basic rationale behind the use of the Mahalanobis distance as an
environment suitability index, for two points P1 and P2, using only the information on the
niche of a species. The ecological spaceis defined by HV1 and HV2. The grey circles
correspond to the used resource units (areais proportional to their use). The space is centered
on the centroid O of the niche. The proximity between the centroid of the niche and a given
point is ameasure of its quality, the centroid being the point where the probability of use by
the speciesis the highest. The Euclidean distances P1-centroid is smaller than the distance P2-
centroid, but both points are likely to have the same suitability (they both are located on the
border of the niche). The Mahalanobis distances take into account the shape of the nichein
this computation (grey levels). Using this measure, P1 and P2 are located at the same

M ahal anobis distance from the centroid of the niche (same level of grey).






Appendix B. Demonstration: the sum of the squared scores of the
pixels on the factorial axes of the MADIFA is equal to the

Mahalanobis distances.

For agiven pixd i, the squared Mahalanobis distance is computed by the sum of the squared
scores of the pixel on the successive axes of the MADIFA. Indeed, using Egn 4 from the
paper, we can show that the sum of the squared scores of a given pixel i on the P axes of the

analysisis equal to:

>i:

k=1

> VIA'ZLAZ AV,

p
k=1

where li is the score of the RU i on the k™ axis of the MADIFA. Using the Eqn. 2, and noting

that the vectors vi have anorm equal to one (because they are the eigenvectors of G), one can

deduce that
P
Z =Zh ViV, =
k=1 k=1

The sum of the squared scores of the pixels on the factorial axes of the MADIFA istherefore

equal to the Mahalanaobis distances.



Appendix C. Results of the principal component analyses
performed to identify the correlations on the study area, and in the
chamois niche

We present below the eigenvalues diagram (inserts) and the correlation circles of the two
principal components analyses (See Table 1 of the main text for the definition of the
variables). (A) Correlation circle of the first two axes of the principal component analysis of
the table describing the value of the 17 environmental variables (columns) in each pixel of the
map of the area (rows). (B) Correlation circle of the first two axes of the principal component

analysisrestricted to the pixels used by the chamois.
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