
Chapter 11
A Step Further in the Integration of Data
Management and Analysis: Pl/R

Mathieu Basille, Ferdinando Urbano and Joe Conway

Abstract This chapter introduces the Pl/R extension, a very powerful alternative
to integrate the features offered by R in the database in a gapless workflow. Pl/R is
a loadable procedural language that allows the use of the R engine and libraries
directly inside the database, thus embedding R scripts into SQL statements and
database functions and triggers. Among many advantages, Pl/R avoids unneces-
sary data replication, allows the use of a single SQL interface for complex scripts
involving R queries and offers a tight integration of data analysis and management
processes into the database. In this chapter, you will have a basic overview of the
potential of Pl/R for the study of GPS locations. You will be introduced to the use
of Pl/R, starting with exercises involving simple calculations in R (logarithms,
median and quantiles), followed by more elaborated exercises designed to com-
pute the daylight times of a given location at a given date, or to compute complex
home range methods.

Keywords R � Pl/R � Database functions � Statistics

M. Basille (&)
Fort Lauderdale Research and Education Center, University of Florida,
3205 College Avenue, Fort Lauderdale, FL 33314, USA
e-mail: basille@ase-research.org

F. Urbano
Università Iuav di Venezia, Santa Croce 191 Tolentini, 30135 Venice, Italy
e-mail: ferdi.urbano@gmail.com

J. Conway
credativ LLC, 270 E Douglas Avenue, El Cajon, CA 92020, USA
e-mail: joe.conway@credativ.com

F. Urbano and F. Cagnacci (eds.), Spatial Database for GPS Wildlife Tracking Data,
DOI: 10.1007/978-3-319-03743-1_11, � Springer International Publishing Switzerland 2014

213

Introduction

In Chap. 9, you discovered the importance of a tight integration of management
and analysis tools for a proper handling of wildlife tracking data. In Chap. 10, you
have seen how R can be connected to the database as a client application to
perform advanced analysis algorithms and complex data processing steps. There is
a very powerful alternative to integrate the features offered by R and by Post-
greSQL/PostGIS in a unique workflow, one that dissolves the boundaries between
management and analysis as required by the processing of data from the new
generation of wildlife tracking sensors.

This advanced approach is offered by Pl/R1, a loadable procedural language that
enables users to write PostgreSQL functions and triggers in the R programming
language. In short, Pl/R integrates R into the database. In fact, it is a PostgreSQL
extension that you can install and enable in the database, similarly to how you
integrated PostGIS (see Chap. 5). Operationally, this tool allows the use of the R
engine and libraries directly inside the database, thus embedding R scripts into
SQL statements and database functions. This is to be compared with using R as a
client application connected to the database (as in Chap. 10): in this case, data are
physically imported into R, where R functions can be run in a dedicated envi-
ronment. The use of R through Pl/R has therefore many advantages, for example:

• no physical replication of data in the two software programs (i.e. no import/
export procedures are needed), thus allowing for better performance and lower
memory requirements;

• a single interface (SQL) to access the features offered by both the database and
R;

• gapless integration of data analysis and management processes into the data-
base, with the possibility to directly store, manage, and reuse results of analysis
to enable meta-analysis.

The integration of R inside the database also opens the door to the automation
of real-time analysis performed routinely on massive sets of data. For instance, this
gapless framework could be used to set up early warning systems that detect
behaviours of the animals that can be potentially dangerous or of particular
importance for researchers.

In this chapter, you will be introduced to the use of Pl/R in the context of
PostGIS. You will start by exercises involving simple calculations in R (loga-
rithms, median and quantiles) to understand how Pl/R works. More elaborated
exercises designed to compute the daylight times of a given location at a given
date or to compute complex home range methods will then give you a basic
overview of the potential of Pl/R for the study of GPS locations.

1 See the official website here: http://www.joeconway.com/web/guest/pl/r.

214 M. Basille et al.

http://dx.doi.org/10.1007/978-3-319-03743-1_9
http://dx.doi.org/10.1007/978-3-319-03743-1_10
http://dx.doi.org/10.1007/978-3-319-03743-1_5
http://dx.doi.org/10.1007/978-3-319-03743-1_10
http://www.joeconway.com/web/guest/pl/r

Getting Started with Pl/R

Pl/R, like PostGIS, is an extension of PostgreSQL. The installation procedure is thus
similar to PostGIS itself, but will not be covered in this book2. However, be sure to have
R installed first3 and that the database user has read access to the directory where R is
installed. Once Pl/R is installed, it must be enabled in your database with the command

CREATE EXTENSION plr;

You can test that it is correctly installed:

SELECT * FROM plr_version();

Now you can create functions in Pl/R procedural language pretty much the
same way you write functions in R. Indeed, the body of a Pl/R function uses the R
syntax, because it is actually pure R code! A generic R code snippet such as

x <- 10
4/3*pi*x^3

can be directly embedded into a Pl/R function in PostgreSQL using a generic
function skeleton with the Pl/R language:

CREATE OR REPLACE FUNCTION tools.plr_fn ()

RETURNS float8 AS

$BODY$

 x <- 10

 4/3*pi*x^3

$BODY$

LANGUAGE 'plr';

The function can then be used in an SQL statement:

SELECT tools.plr_fn ();

A critical point is to communicate data from the database to and from R. In this
simple example, R returns a numeric which is recognised by Pl/R as a float8. Pl/R
can natively handle several types, including booleans (converted to logical in R),
all forms of integer (converted to integer) or numeric (converted to numeric) and
all forms of text (converted to character)4.

2 See http://www.joeconway.com/plr/doc/plr-install.html for more details.
3 To download and install R, check your preferred CRAN mirror: http://cran.r-project.org/mirrors.html.
4 See http://www.joeconway.com/plr/doc/plr-data.html.

11 A Step Further in the Integration of Data Management and Analysis: Pl/R 215

http://www.joeconway.com/plr/doc/plr-install.html
http://cran.r-project.org/mirrors.html
http://www.joeconway.com/plr/doc/plr-data.html

You will now start exploring the potential of Pl/R by writing a function r_log to
calculate the logarithm of a sample of numbers:

CREATE OR REPLACE FUNCTION tools.r_log(float8, float8)

RETURNS float AS

$BODY$

 log(arg1, arg2)

$BODY$

LANGUAGE 'plr';

Note that functions to compute logarithms already exist in PostgreSQL, so that you
can immediately compare the results given by R and PostgreSQL (remember that with
a Pl/R function, the R engine does the computation, and PostgreSQL only handles the
input and output). In this example, you calculate the natural and the common (base 10)
logarithm of the area of the Minimum Convex Polygons (MCP) created in Chap. 9:

SELECT

 area, log(area), tools.r_log(area, 10), ln(area), tools.r_log(area, exp(1))

FROM analysis.home_ranges_mcp

WHERE description = 'test all animals at 0.9';

The result is

Fortunately, the results are consistent whether the logarithms are computed by
R or PostgreSQL.

Sample Median and Quantiles

Now, let us go one step further and fill a gap of a missing feature of PostgreSQL,
namely the ability to calculate the median, and more generally a given quantile, of
a sample. Let us start by the median, which will naturally use the median function
from R. In this example, you need to pass a sample of values in an array (rep-
resented by float8[]) to the function tools.median:

CREATE OR REPLACE FUNCTION tools.median(float8[])

RETURNS float AS

$BODY$

 median(arg1, na.rm = TRUE)

$BODY$

LANGUAGE 'plr';

216 M. Basille et al.

http://dx.doi.org/10.1007/978-3-319-03743-1_9

The trick here is that median is actually an aggregate function5 that works on
several rows at once. Pl/R provides a set of dedicated support tools6, such as the
plr_array_accum function which you will use to write the aggregate function:

CREATE AGGREGATE tools.median (float8)

(

 sfunc = plr_array_accum,

 stype = float8[],

 finalfunc = tools.median

);

You can test the function on the same set of data used for the previous example,
with comparison to the mean:

SELECT count(area), avg(area), tools.median(area)

FROM analysis.home_ranges_mcp

WHERE description = 'test all animals at 0.9';

The result is

One of the most interesting features of aggregate functions is that they can be
used on distinct groups as defined by the GROUP BY clause. Let us see a working
example, which retrieves the average and median elevation for each monitored
animal and computes the difference:

SELECT

 animals_id, avg(altitude_srtm), tools.median(altitude_srtm), tools.median

(altitude_srtm) - avg(altitude_srtm) AS diff

FROM main.gps_data_animals

WHERE animals_id != 6 AND gps_validity_code = 1

GROUP BY animals_id

ORDER BY animals_id;

The result shows that the median is systematically higher than the mean, which
is indicative of a distribution skewed towards low elevations:

5 http://www.postgresql.org/docs/9.2/static/functions-aggregate.html.
6 http://www.joeconway.com/plr/doc/plr-pgsql-support-funcs.html.

11 A Step Further in the Integration of Data Management and Analysis: Pl/R 217

http://www.postgresql.org/docs/9.2/static/functions-aggregate.html
http://www.joeconway.com/plr/doc/plr-pgsql-support-funcs.html

You will now proceed with the more general quantile function. The approach is
slightly more complicated, since the function requires both the sample on which to
compute the quantile, and a number to indicate which quantile to compute
(between 0 and 1). The aforementioned plr_array_append function only works on
an array; you will thus first create a new plr_array_val_append function to work
on an array together with a value (the probability of the quantile), and its asso-
ciated array_val type (note that you store both in the tools schema):

CREATE TYPE tools.array_val AS (arr float8[], val float8);

CREATE OR REPLACE FUNCTION tools.plr_array_val_append(

 array_val tools.array_val, new_val float8, keep_val float8)

RETURNS tools.array_val CALLED ON NULL INPUT AS

$BODY$

 DECLARE

 arr float8[];

 out record;

 BEGIN

 IF array_val IS NULL THEN

 arr := ARRAY[new_val];

 ELSE

 arr := array_val.arr || new_val;

 END IF;

 out = row(arr, keep_val)::tools.array_val;

 RETURN out;

 END;

$BODY$

LANGUAGE plpgsql;

The new tools.quantile will now work on a array_val object, and the associated
aggregate function will use the newly created tools.plr_array_val_append
function:

CREATE OR REPLACE FUNCTION tools.quantile(tools.array_val)

RETURNS float AS

$BODY$

 quantile(unlist(arg1$arr), probs = arg1$val, na.rm = TRUE)

$BODY$

LANGUAGE 'plr';

CREATE AGGREGATE tools.quantile (float8, float8)

(
 sfunc = tools.plr_array_val_append,

 stype = tools.array_val,

 finalfunc = tools.quantile

);

You can now try to use the quantile function with different probabilities, and
check that the 50 % quantile actually corresponds to the median:

218 M. Basille et al.

SELECT

 count(area), avg(area), tools.median(area), tools.quantile(area, 0.5) AS

quant50, tools.quantile(area, 0.1) AS quant10, tools.quantile(area, 0.9) AS

quant90

FROM analysis.home_ranges_mcp

WHERE description = 'test all animals at 0.9';

The result is

Of course, given that you just created an aggregate function, there is no reason
not to use the GROUP BY clause, for instance to calculate the 5 and 95 % quantiles
of the elevation for each animal:

SELECT

 animals_id, avg(altitude_srtm), tools.median(altitude_srtm),

tools.quantile(altitude_srtm, 0.05) AS quant05,

tools.quantile(altitude_srtm, 0.95) AS quant95

FROM main.gps_data_animals

WHERE animals_id != 6

GROUP BY animals_id

ORDER BY animals_id;

This gives the following result:

In the Middle of the Night

One of the most powerful assets of R is its broad and ever-growing package
ecosystem (4919 packages at the time of writing7). If a statistical method has been
developed, it most likely exists for R in a given package. In this example, you are
going to implement a useful feature concealed in the maptools package, which
provides a set of functions able to deal with the position of the sun and compute
crepuscule, sunrise and sunset times for a given location at a given date8. Although

7 See the list on CRAN: http://cran.r-project.org/web/packages/available_packages_by_name.html.
8 This example is based on, and extends, a tutorial from George MacKerron: http://blog.
mackerron.com/2012/10/15/sunrise-sunset-postgis-plr/.

11 A Step Further in the Integration of Data Management and Analysis: Pl/R 219

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://blog.mackerron.com/2012/10/15/sunrise-sunset-postgis-plr/
http://blog.mackerron.com/2012/10/15/sunrise-sunset-postgis-plr/

the computation of these times depends on the definition you use (e.g. the defi-
nition of the horizon, the angle of the sun below or above the horizon), it is beyond
the aim of this chapter to enter into details, and you will just use the standard
maptools approach, which relies on algorithms from the National Oceanic and
Atmospheric Administration (NOAA9).

For this example, you will need the R packages rgeos, maptools and rgdal: make
sure to install them first in R. All these packages will be loaded on demand in the
function, but note that Pl/R can also load a list of packages at start-up10. As seen
earlier, Pl/R can communicate basic data types from PostgreSQL and R, but cannot
handle spatial objects. However, both PostgreSQL and R can handle well-known
text (WKT) representations, which are simply passed as text strings. The only
drawback of this approach is that the standard WKT approach does not include the
projection, so that you need to explicitly pass it. Here is the daylight function, which
returns the sunrise and sunset times (as a text array) for a spatial point expressed as a
WKT, with its associated SRID, a timestamp to give the date and a time zone:

CREATE OR REPLACE FUNCTION tools.daylight(

 wkt text,

 srid integer,

 datetime timestamptz,

 timezone text)

RETURNS text[] AS

$BODY$

 require(rgeos)

 require(maptools)

 require(rgdal)

 pt <- readWKT(wkt, p4s = CRS(paste0("+init=epsg:", srid)))

 dt <- as.POSIXct(substring(datetime, 1, 19), tz = timezone)

 sr <- sunriset(pt, dateTime = dt, direction = "sunrise",

 POSIXct.out = TRUE)$time

 ss <- sunriset(pt, dateTime = dt, direction = "sunset",

 POSIXct.out = TRUE)$time

 return(c(as.character(sr), as.character(ss)))

$BODY$

LANGUAGE 'plr';

Let us try to get the sunrise and sunset times for today, near the municipality of
Terlago, northern Italy. Because R and PostgreSQL use different time zone for-
mats, you need to pass the time zone to R literally as ‘Europe/Rome’11:

SELECT tools.daylight('POINT(11.001 46.001)', 4326, '2012-09-01'

::timestamp, 'Europe/Rome');

The results indicate a sunrise at 07:26 and a sunset at 18:39, as seen below:

9 For more details, see: http://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html.
10 See: http://www.joeconway.com/plr/doc/plr-module-funcs.html.
11 See ?timezone in R for more details on the time zone format.

220 M. Basille et al.

http://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html
http://www.joeconway.com/plr/doc/plr-module-funcs.html

You can now modify this function to return a boolean value (TRUE or FALSE)
indicating whether a given time of the day at a given location corresponds to
daylight or not. This is the purpose of the is_daylight function, which will prove
useful to test the daylight for animal locations:

CREATE OR REPLACE FUNCTION tools.is_daylight(

 wkt text,

 srid integer,

 datetime timestamptz,

 timezone text)

RETURNS boolean AS

$BODY$

 require(rgeos)

 require(maptools)

 require(rgdal)

 pt <- readWKT(wkt, p4s = CRS(paste0("+init=epsg:", srid)))

 dt <- as.POSIXct(substring(datetime, 1, 19), tz = timezone)

 sr <- sunriset(pt, dateTime = dt, direction = "sunrise",

 POSIXct.out = TRUE)$time

 ss <- sunriset(pt, dateTime = dt, direction = "sunset",

 POSIXct.out = TRUE)$time

 return(ifelse(dt >= sr & dt < ss, TRUE, FALSE))

$BODY$

LANGUAGE 'plr';

This function can be used on a single point, e.g. with the same coordinates as
above:

SELECT tools.is_daylight('POINT(11.001 46.001)', 4326, '2013-10-10

12:34:56'::timestamp, 'Europe/Rome');

The result is

Since the function seems to work, you can apply it to GPS locations. Let us run
it for the first 10 valid locations:

WITH tmp AS (SELECT ('Europe/Rome')::text AS tz)

SELECT

ST_AsText(geom) AS location,

acquisition_time AT TIME ZONE tz AS acquisition_time,

tools.is_daylight(ST_AsText(geom), ST_SRID(geom), acquisition_time

AT TIME ZONE tz, tz)

FROM main.gps_data_animals, tmp

WHERE gps_validity_code = 1

LIMIT 10;

11 A Step Further in the Integration of Data Management and Analysis: Pl/R 221

The results directly provide the daylight boolean for each location:

Extending the Home Range Concept

In Chaps. 5 and 8, the MCP method was introduced, and Chap. 9 described how it can
be used to define the notion of home ranges. In this section, you will first reproduce
the MCP home ranges, using the mcp function from the R package adehabitatHR12.
To do this, you first create a new type hr that stores a polygon as a WKT, together
with its associated percentage, and the function mcp_r to compute the MCP:

CREATE TYPE tools.hr AS (percent int, wkt text);

CREATE OR REPLACE FUNCTION tools.mcp_r (wkt text, percent integer)

RETURNS SETOF tools.hr AS

$BODY$

 require(rgeos)

 require(adehabitatHR)

 geom <- readWKT(wkt)

 return(data.frame(percent = percent, wkt = sapply(percent, function(x)

 writeWKT(mcp(geom, x)))))

$BODY$

LANGUAGE plr;

The function can be simply called on a collection of points as a WKT and an
integer between 0 and 100 (as the percentage of locations kept for the
computation):

SELECT (tools.mcp_r(ST_AsText(ST_Collect(geom)), 90)).*

FROM main.gps_data_animals

WHERE gps_validity_code = 1 AND animals_id = 1;

12 http://cran.r-project.org/web/packages/adehabitatHR/.

222 M. Basille et al.

http://dx.doi.org/10.1007/978-3-319-03743-1_5
http://dx.doi.org/10.1007/978-3-319-03743-1_8
http://dx.doi.org/10.1007/978-3-319-03743-1_9
http://cran.r-project.org/web/packages/adehabitatHR/

The result is thus a combination of the percentage and the WKT representation
of the MCP:

To make sure that the function works correctly, you can compare the outputs
with the home ranges created in Chap. 9 and stored in analysis.home_ranges_mcp,
using an MCP with 90 % of the relocations:

WITH
 mcpr AS (

 SELECT

 animals_id,(tools.mcp_r(ST_AsText(ST_Collect(geom)), 90)).*

 FROM main.gps_data_animals

 WHERE gps_validity_code = 1 AND animals_id <> 6

 GROUP BY animals_id)

SELECT

 mcpr.animals_id, mcpr.percent,

 ST_Area(geography(wkt)) / 1000000 AS area_r, mcp.area AS area_pg

FROM mcpr, analysis.home_ranges_mcp AS mcp

WHERE mcpr.animals_id = mcp.animals_id

 AND mcp.description = 'test all animals at 0.9'

GROUP BY mcpr.animals_id, mcpr.wkt, mcp.area, percent

ORDER BY mcpr.animals_id;

As you can see in the following results, the computations are very similar and
only slight discrepancies are visible, caused by using different approaches in
selecting a given percentage of locations to compute the MCP:

Let us now introduce a different approach of defining a home range. Instead of a
mere polygon, a home range can be defined by the probability that an animal is
found at a given point, which is called a utilisation distribution (UD). The core
areas of the home range, which are used more often, are then associated with a
higher probability; as a consequence, it is also possible to derive the polygon that
corresponds to the minimum area in which an animal has a given probability of
being located. The simplest UD approach relies on the kernel method, which
basically applies a bivariate normal distribution around each location and sums
these distribution over the landscape. As no function in PostGIS enables the
computation of kernel home ranges, you will wrap the kernelUD function from
adehabitatHR into a new function kernelud, following an approach very similar to
the mcp_r function:

11 A Step Further in the Integration of Data Management and Analysis: Pl/R 223

http://dx.doi.org/10.1007/978-3-319-03743-1_9

CREATE OR REPLACE FUNCTION tools.kernelud (wkt text, percent integer)

RETURNS SETOF tools.hr AS

$BODY$

 require(rgeos)

 require(adehabitatHR)

 geom <- readWKT(wkt)

 kud <- kernelUD(geom)

 return(data.frame(percent = percent, wkt = sapply(percent, function(x)

 writeWKT(getverticeshr(kud, x)))))

$BODY$

LANGUAGE plr;

You can thus query the table with all animal locations to compute the kernel
home range, for instance for animal 1 at 50, 90, and 95 %:

WITH tmp AS (SELECT unnest(ARRAY[50,90,95]) AS pc)

SELECT (tools.kernelud(ST_AsText(ST_Collect(geom)), pc)).*

FROM main.gps_data_animals, tmp

WHERE gps_validity_code = 1 AND animals_id = 1

GROUP BY pc

ORDER BY pc;

The result is a list of hr objects:

You will now create a table analysis.home_ranges_kernelud to store the dif-
ferent kernel home ranges, exactly as the analysis.home_ranges_mcp stores the
MCP home ranges:

CREATE TABLE analysis.home_ranges_kernelud(

 home_ranges_kernelud_id serial NOT NULL,

 animals_id integer NOT NULL,

 start_time timestamp with time zone NOT NULL,

 end_time timestamp with time zone NOT NULL,

 num_locations integer,

 area numeric(13,5),

 geom geometry (multipolygon, 4326),

 percentage double precision,

 insert_timestamp timestamp with time zone

 DEFAULT now(),

 CONSTRAINT home_ranges_kernelud_pk

 PRIMARY KEY (home_ranges_kernelud_id),

 CONSTRAINT home_ranges_kernelud_animals_fk

 FOREIGN KEY (animals_id)

 REFERENCES main.animals (animals_id) MATCH SIMPLE

 ON UPDATE NO ACTION ON DELETE NO ACTION);

COMMENT ON TABLE analysis.home_ranges_kernelud

224 M. Basille et al.

IS 'Table that stores the home range polygons derived from kernelUD. The

area is computed in squared km.';

CREATE INDEX fki_home_ranges_kernelud_animals_fk

 ON analysis.home_ranges_kernelud

 USING btree (animals_id);

CREATE INDEX gist_home_ranges_kernelud_index

 ON analysis.home_ranges_kernelud

 USING gist (geom);

Let us now populate this table using 50 and 90 % kernels for all animals (see
the graphical results in Fig. 11.1):

WITH

 tmp AS (SELECT unnest(ARRAY[50,90,95]) AS pc),

 kud AS (

 SELECT

 animals_id,

 min(acquisition_time) AS start_time,

 max(acquisition_time) AS end_time,

 count(animals_id) AS num_locations,

 (tool.kernelud(ST_AsText(ST_Collect(geom)), pc)).*

 FROM main.gps_data_animals, tmp

Fig. 11.1 Kernel home ranges at 50, 90 and 95 %

11 A Step Further in the Integration of Data Management and Analysis: Pl/R 225

 WHERE

 gps_validity_code = 1 AND animals_id <> 6

 GROUP BY animals_id,pc

 ORDER BY animals_id,pc)

INSERT INTO analysis.home_ranges_kernelud (animals_id, start_time, end_time,

num_locations, area, geom, percentage)

SELECT

 animals_id,

 start_time,

 end_time,

 num_locations,

 ST_Area(geography(wkt)) / 1000000,

 ST_GeomFromText(wkt, 4326),

 percent / 100.0

FROM kud

ORDER BY animals_id, percent;

You can now compare the outputs from the MCP and the kernel home ranges.
You thus retrieve the results from the MCP and the kernel table, using the home
ranges estimated at 90 %. For each animal, you also compute the area of the home
range overlap as estimated by both methods (using ST_Intersection to define the
shared area), and the proportion of common area (using ST_Union) that it represents:

Fig. 11.2 Comparison between kernel and MCP home range at 90 %

226 M. Basille et al.

SELECT

 mcp.animals_id AS ani_id,

 mcp.area AS mcp_area,

 kud.area AS kud_area,

 ST_Area(geography(ST_Intersection(mcp.geom, kud.geom))) / 1000000 AS

overlap,

 ST_Area(geography(ST_Intersection(mcp.geom, kud.geom))) /

ST_Area(geography(ST_Union(mcp.geom, kud.geom))) AS over_prop

FROM

 analysis.home_ranges_mcp AS mcp,

 analysis.home_ranges_kernelud AS kud

WHERE

 mcp.animals_id = kud.animals_id AND

 mcp.percentage = kud.percentage AND

 mcp.percentage = 0.9;

Note that the percentage in each function is not exactly the same, which should
prevent any conclusion from the comparison: for the MCP, it relates to the pro-
portion of locations used in the computation, while for the kernel, it relates to the
density of the UD. Nevertheless, they provide polygons with very similar areas,
which is surprising! But, as you can see from the proportion of overlap, and in
Fig. 11.2, the areas depicted by both methods are actually very different and
highlight the different philosophies underlying each method:

As a final note, beware that projections were purposely ignored in this exercise.
In particular, the kernulUD function from adehabitatHR assumes that you are
using planar coordinates (from a Cartesian coordinate system such as UTM), but
not geographic coordinates (longitude, lattitude), and does not check for it. Indeed,
using geographic coordinates could result in inaccurate results because they are
processed as planar coordinates. More accurate results would be achieved by first
reprojecting the data in a planar coordinate system, e.g. in UTM, and converting
the results back into geographic coordinates. Here is such an example on animal 1,
using the tools.srid_utm function, presented in Chap. 9, that calculates the SRID of
the UTM zone where the centroid of the data set is located:

11 A Step Further in the Integration of Data Management and Analysis: Pl/R 227

http://dx.doi.org/10.1007/978-3-319-03743-1_9

WITH

 srid AS (

 SELECT tools.srid_utm(

 ST_X(ST_Centroid(ST_Collect(geom))),

 ST_Y(ST_Centroid(ST_Collect(geom)))) AS utm

 FROM main.gps_data_animals

 WHERE gps_validity_code = 1 AND animals_id = 1),

 kver AS (

 SELECT (tools.kernelud(ST_AsText(

 ST_Transform(ST_Collect(geom), srid.utm)), 90)).*

 FROM main.gps_data_animals, srid

 WHERE gps_validity_code = 1 AND animals_id = 1

 GROUP BY srid.utm)

SELECT

 kver.percent AS pc,

 ST_AsEWKT(

 ST_Transform(

 ST_GeomFromText(kver.wkt, srid.utm),

 4326)) AS ewkt

FROM kver, srid;

This gives the following result:

Conclusions and Perspectives

In this chapter, you only briefly tackled the possibilities of Pl/R. In Chap. 10, you
were presented an extensive overview of the use of R in the field of animal
ecology, and how R can nicely complement PostGIS for the study of animal
locations. However, you saw that the flow between PostGIS and R is not always
linear: it is sometimes required to send data from R back to PostGIS, run some
further spatial queries and retrieve the results again in R. PostGIS offers some very
useful features that R does not, such as the online publication and interactive
mapping of spatial data13. Lastly, it might be necessary to use only one language in
order to evaluate complex scripts. For all these reasons, the potential of Pl/R for
the biologist is immense, but you have barely scratched the surface of the possi-
bilities here and the development of Pl/R in the context of spatial data will likely
grow in the coming years.

As you could see in the few examples provided in this chapter, the main
challenge in using Pl/R is to communicate data from PostGIS to R, and back.
While Pl/R can only handle basic data types (all kinds of numeric, text and
boolean), it cannot directly handle spatial and temporal objects. Fortunately, you

13 See for instance MapServer: http://mapserver.org/.

228 M. Basille et al.

http://dx.doi.org/10.1007/978-3-319-03743-1_10
http://mapserver.org/

saw that the WKT representation could be used to this end and allows you to
handle vector features (points, lines and polygons) in a straightforward manner.
Other possibilities exist too. For simple cases, you could also pass directly spatial
coordinates, using for instance ST_X(geom) or ST_Y(geom), and passing them to R
as numbers, which would then be converted to spatial objects in R (exactly as was
done in Chap. 10, but wrapped in a Pl/R function). This is perfectly valid for
simple geometries (i.e. a set of points or segments) for which it is easy to manually
handle the coordinates, but more complex geometries (a collection of multilines or
multipolygons) would rather quickly become intractable, in which case the WKT
approach offers a robust and flexible standard approach. Pl/R also offers a function
(pg.spi.exec) to directly evaluate SQL code from the body of the function, which
can be very useful in some cases, especially when the data would be too com-
plicated to pass in the arguments (in essence, it is similar to the dbGetQuery
function from the R package RpostgreSQL).

The last two things to consider involve the most complex data types. First of all,
Pl/R is also able to handle binary data types (bytea objects). This can be very
useful in many cases, when the object of interest computed in R has no corre-
spondence to PostgreSQL objects, but you still would like to store it in the
database. Imagine, for instance, a ltraj object (see Chap. 10), or a PNG figure that
you would like to communicate to a Web server for display in a browser14. It
would be immensely complex to convert these objects using PostgreSQL data
types. However, using bytea objects allows you to store them when necessary, and
to use them again in a software able to deal with them (e.g. R for ltraj objects or
any Web server for an image). Finally, there was no example in this chapter
dealing with rasters, because there is no simple way to deal with them in a Pl/R
function. At the moment of writing, there is no way to pass a raster in the argu-
ments, as WKT representations of rasters are not standardised yet. Possible
solutions involve the use of the package rgdal (i.e. readGDAL to import a raster to
R, and writeGDAL to send it back to the database), or directly raster2pgsql in a
system call to write rasters into the database15. Unfortunately, both approaches
require you to pass credentials to access the database as arguments, or, worse, to
directly include them in the function (which is definitely not a good practice).
However, progress in this area can only improve the situation in the coming years.

14 See an example here: http://www.joeconway.com/web/guest/pl/r/-/wiki/Main/Bytea+
Graphing+Example.
15 Another solution might be to use the TerraLib library, which involves another set of
dependencies: http://www.terralib.org/.

11 A Step Further in the Integration of Data Management and Analysis: Pl/R 229

http://dx.doi.org/10.1007/978-3-319-03743-1_10
http://dx.doi.org/10.1007/978-3-319-03743-1_10
http://www.joeconway.com/web/guest/pl/r/-/wiki/Main/Bytea+Graphing+Example
http://www.joeconway.com/web/guest/pl/r/-/wiki/Main/Bytea+Graphing+Example
http://www.terralib.org/

	11 A Step Further in the Integration of Data Management and Analysis: Pl/R
	Abstract
	Introduction
	Getting Started with Pl/R
	Sample Median and Quantiles
	In the Middle of the Night
	Extending the Home Range Concept
	Conclusions and Perspectives

